Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://vo.astronet.ru/arxiv/?get_articles=1&author=M.
Äàòà èçìåíåíèÿ: Unknown
Äàòà èíäåêñèðîâàíèÿ: Wed Apr 13 08:22:50 2016
Êîäèðîâêà: Windows-1251

Ïîèñêîâûå ñëîâà: ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï
Full-text search for arXiv > astro-ph

sort results by

Use logical operators AND, OR, NOT and round brackets to construct complex queries. Whitespace-separated words are treated as ANDed.

Show articles per page in mode

M.

Normalized to: M..

8 article(s) in total. 208 co-authors, from 1 to 7 common article(s). Median position in authors list is 7,5.

[1]  oai:arXiv.org:1204.2869  [pdf] - 1117945
Characterizing Low-Mass Binaries From Observation of Long Time-scale Caustic-crossing Gravitational Microlensing Events
Shin, I. -G.; Han, C.; Choi, J. -Y.; Udalski, A.; Sumi, T.; Gould, A.; Bozza, V.; Dominik, M.; Fouquÿ, P.; Horne, K.; M.; SzymaÅ'ski, K.; Kubiak, M.; SoszyÅ'ski, I.; PietrzyÅ'ski, G.; Poleski, R.; Ulaczyk, K.; Pietrukowicz, P.; KozÅ'owski, S.; Skowron, J.; Wyrzykowski, Å?.; Abe, F.; Bennett, D. P.; Bond, I. A.; Botzler, C. S.; Chote, P.; Freeman, M.; Fukui, A.; Furusawa, K.; Itow, Y.; Kobara, S.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Miyake, N.; Muraki, Y.; Ohmori, K.; Ohnishi, K.; Rattenbury, N. J.; Saito, To.; Sullivan, D. J.; Suzuki, D.; Suzuki, K.; Sweatman, W. L.; Takino, S.; Tristram, P. J.; Wada, K.; Yock, P. C. M.; Bramich, D. M.; Snodgrass, C.; Steele, I. A.; Street, R. A.; Tsapras, Y.; Alsubai, K. A.; Browne, P.; Burgdorf, M. J.; Novati, S. Calchi; Dodds, P.; Dreizler, S.; Fang, X. -S.; Grundahl, F.; Gu, C. -H.; Hardis, S.; HarpsÅ', K.; Hinse, T. C.; Hornstrup, A.; Hundertmark, M.; Jessen-Hansen, J.; JÃårgensen, U. G.; Kains, N.; Kerins, E.; Liebig, C.; Lund, M.; Lunkkvist, M.; Mancini, L.; Mathiasen, M.; Penny, M. T.; Rahvar, S.; Ricci, D.; Scarpetta, G.; Skottfelt, J.; Southworth, J.; Surdej, J.; Tregloan-Reed, J.; Wambsganss, J.; Wertz, O.; Almeida, L. A.; Batista, V.; Christie, G.; DePoy, D. L.; Dong, Subo; Gaudi, B. S.; Henderson, C.; Jablonski, F.; Lee, C. -U.; McCormick, J.; McGregor, D.; Moorhouse, D.; Natusch, T.; Ngan, H.; Park, S. -Y.; Pogge, R. W.; Tan, T. -G.; Thornley, G.; Yee, J. C.; Albrow, M. D.; Bachelet, E.; Beaulieu, J. -P.; Brillant, S.; Cassan, A.; Cole, A. A.; Corrales, E.; Coutures, C.; Dieters, S.; Prester, D. Dominis; Donatowicz, J.; Greenhill, J.; Kubas, D.; Marquette, J. -B.; Menzies, J. W.; Sahu, K. C.; Zub, M.
Comments: 8 pages, 5 figures, 4 tables
Submitted: 2012-04-12, last modified: 2012-06-12
Despite astrophysical importance of binary star systems, detections are limited to those located in small ranges of separations, distances, and masses and thus it is necessary to use a variety of observational techniques for a complete view of stellar multiplicity across a broad range of physical parameters. In this paper, we report the detections and measurements of 2 binaries discovered from observations of microlensing events MOA-2011-BLG-090 and OGLE-2011-BLG-0417. Determinations of the binary masses are possible by simultaneously measuring the Einstein radius and the lens parallax. The measured masses of the binary components are 0.43 $M_{\odot}$ and 0.39 $M_{\odot}$ for MOA-2011-BLG-090 and 0.57 $M_{\odot}$ and 0.17 $M_{\odot}$ for OGLE-2011-BLG-0417 and thus both lens components of MOA-2011-BLG-090 and one component of OGLE-2011-BLG-0417 are M dwarfs, demonstrating the usefulness of microlensing in detecting binaries composed of low-mass components. From modeling of the light curves considering full Keplerian motion of the lens, we also measure the orbital parameters of the binaries. The blended light of OGLE-2011-BLG-0417 comes very likely from the lens itself, making it possible to check the microlensing orbital solution by follow-up radial-velocity observation. For both events, the caustic-crossing parts of the light curves, which are critical for determining the physical lens parameters, were resolved by high-cadence survey observations and thus it is expected that the number of microlensing binaries with measured physical parameters will increase in the future.
[2]  oai:arXiv.org:1203.0026  [pdf] - 493624
Ultra Long Period Cepheids: a primary standard candle out to the Hubble flow
Comments: 8 pages, 4 figures, accepted for publication in Astrophysics & Space Science
Submitted: 2012-02-29
The cosmological distance ladder crucially depends on classical Cepheids (with P=3-80 days), which are primary distance indicators up to 33 Mpc. Within this volume, very few SNe Ia have been calibrated through classical Cepheids, with uncertainty related to the non-linearity and the metallicity dependence of their period-luminosity (PL) relation. Although a general consensus on these effects is still not achieved, classical Cepheids remain the most used primary distance indicators. A possible extension of these standard candles to further distances would be important. In this context, a very promising new tool is represented by the ultra-long period (ULP) Cepheids (P \geq 80 days), recently identified in star-forming galaxies. Only a small number of ULP Cepheids have been discovered so far. Here we present and analyse the properties of an updated sample of 37 ULP Cepheids observed in galaxies within a very large metallicity range of 12+log(O/H) from ~7.2 to 9.2 dex. We find that their location in the colour(V-I)-magnitude diagram as well as their Wesenheit (V-I) index-period (WP) relation suggests that they are the counterparts at high luminosity of the shorter-period (P \leq 80 days) classical Cepheids. However, a complete pulsation and evolutionary theoretical scenario is needed to properly interpret the true nature of these objects. We do not confirm the flattening in the studied WP relation suggested by Bird et al. (2009). Using the whole sample, we find that ULP Cepheids lie around a relation similar to that of the LMC, although with a large spread (~0.4 mag).
[3]  oai:arXiv.org:1203.0026  [pdf] - 493624
Ultra Long Period Cepheids: a primary standard candle out to the Hubble flow
Comments: 8 pages, 4 figures, accepted for publication in Astrophysics & Space Science
Submitted: 2012-02-29
The cosmological distance ladder crucially depends on classical Cepheids (with P=3-80 days), which are primary distance indicators up to 33 Mpc. Within this volume, very few SNe Ia have been calibrated through classical Cepheids, with uncertainty related to the non-linearity and the metallicity dependence of their period-luminosity (PL) relation. Although a general consensus on these effects is still not achieved, classical Cepheids remain the most used primary distance indicators. A possible extension of these standard candles to further distances would be important. In this context, a very promising new tool is represented by the ultra-long period (ULP) Cepheids (P \geq 80 days), recently identified in star-forming galaxies. Only a small number of ULP Cepheids have been discovered so far. Here we present and analyse the properties of an updated sample of 37 ULP Cepheids observed in galaxies within a very large metallicity range of 12+log(O/H) from ~7.2 to 9.2 dex. We find that their location in the colour(V-I)-magnitude diagram as well as their Wesenheit (V-I) index-period (WP) relation suggests that they are the counterparts at high luminosity of the shorter-period (P \leq 80 days) classical Cepheids. However, a complete pulsation and evolutionary theoretical scenario is needed to properly interpret the true nature of these objects. We do not confirm the flattening in the studied WP relation suggested by Bird et al. (2009). Using the whole sample, we find that ULP Cepheids lie around a relation similar to that of the LMC, although with a large spread (~0.4 mag).
[4]  oai:arXiv.org:1012.0782  [pdf] - 1042365
UWISH2 -- The UKIRT Widefield Infrared Survey for H2
Comments: 14pages, 8figures, 2tables, accepted for publication by MNRAS, a version with higher resolution figures can be found at http://astro.kent.ac.uk/~df/
Submitted: 2010-12-03
We present the goals and preliminary results of an unbiased, near-infrared, narrow-band imaging survey of the First Galactic Quadrant (10deg<l<65deg ; -1.3deg<b<+1.3deg). This area includes most of the Giant Molecular Clouds and massive star forming regions in the northern hemisphere. The survey is centred on the 1-0S(1) ro-vibrational line of H2, a proven tracer of hot, dense molecular gas in star-forming regions, around evolved stars, and in supernova remnants. The observations complement existing and upcoming photometric surveys (Spitzer-GLIMPSE, UKIDSS-GPS, JCMT-JPS, AKARI, Herschel Hi-GAL, etc.), though we probe a dynamically active component of star formation not covered by these broad-band surveys. Our narrow-band survey is currently more than 60% complete. The median seeing in our images is 0.73arcsec. The images have a 5sigma detection limit of point sources of K=18mag and the surface brightness limit is 10^-19Wm^-2arcsec^-2 when averaged over our typical seeing. Jets and outflows from both low and high mass Young Stellar Objects are revealed, as are new Planetary Nebulae and - via a comparison with earlier K-band observations acquired as part of the UKIDSS GPS - numerous variable stars. With their superior spatial resolution, the UWISH2 data also have the potential to reveal the true nature of many of the Extended Green Objects found in the GLIMPSE survey.
[5]  oai:arXiv.org:1009.1015  [pdf] - 223674
Design, analysis, and testing of a microdot apodizer for the apodized pupil Lyot coronagraph (Research note). III. Application to extremely large telescopes
Comments: A&A accepted
Submitted: 2010-09-06
The apodized-pupil Lyot coronagraph is one of the most advanced starlight cancellation concepts studied intensively in the past few years. Extreme adaptive optics instruments built for present-day 8m class telescopes will operate with such coronagraph for imagery and spectroscopy of faint stellar companions. Following the development of an early demonstrator in the context of the VLT-SPHERE project (~2012), we manufactured and tested a second APLC prototype in microdots designed for extremely large telescopes. This study has been conducted in the context of the EPICS instrument project for the European-ELT (~2018), where a proof of concept is required at this stage. Our prototype was specifically designed for the European-ELT pupil, taking its large central obscuration ratio (30%) into account. Near-IR laboratory results are compared with simulations. We demonstrate good agreement with theory. A peak attenuation of 295 was achieved, and contrasts of 10^-5 and 10^-6 were reached at 7 and 12 lambda/D, respectively. We show that the APLC is able to maintain these contrasts with a central obscuration ratio of the telescope in the range 15% to 30%, and we report that these performances can be achieved in a wide wavelength bandpass (BW = 24%). In addition, we report improvement to the accuracy of the control of the local transmission of the manufactured microdot apodizer to that of the previous prototype. The local profile error is found to be less than 2%. The maturity and reproducibility of the APLC made with microdots is demonstrated. The apodized pupil Lyot coronagraph is confirmed to be a pertinent candidate for high-contrast imaging with ELTs.
[6]  oai:arXiv.org:1006.3060  [pdf] - 189519
Doppler images of the RS CVn binary II Pegasi during the years 1994-2002
Comments:
Submitted: 2010-06-15
We publish 16 Doppler imaging temperature maps for the years 1994-2002 of the active RS CVn star II Peg. The six maps from 1999-2002 are based on previously unpublished observations. Through Doppler imaging we want to study the spot evolution of the star and in particular compare this with previous results showing a cyclic spot behaviour and persistent active longitudes. The observations were collected with the SOFIN spectrograph at the Nordic Optical Telescope. The temperature maps were calculated using a Doppler imaging code based on Tikhonov regularization. During 1994-2001, our results show a consistent trend in the derived longitudes of the principal and secondary temperature minima over time such that the magnetic structure appears to rotate somewhat more rapidly than the orbital period of this close binary. A sudden phase jump of the active region occured between the observing seasons of 2001 and 2002. No clear trend over time is detected in the derived latitudes of the spots, indicating that the systematic motion could be related to the drift of the spot generating mechanism rather than to differential rotation. The derived temperature maps are quite similar to the ones obtained earlier with a different methods, the main differences occurring in the spot latitudes and relative strength of the spot structures. We observe both longitude and latitude shifts in the spot activity of II Peg. However, our results are not consistent with the periodic behaviour presented in previous studies.