Normalized to: G..
[1]
oai:arXiv.org:1203.0026 [pdf] - 493624
Ultra Long Period Cepheids: a primary standard candle out to the Hubble
flow
Submitted: 2012-02-29
The cosmological distance ladder crucially depends on classical Cepheids
(with P=3-80 days), which are primary distance indicators up to 33 Mpc. Within
this volume, very few SNe Ia have been calibrated through classical Cepheids,
with uncertainty related to the non-linearity and the metallicity dependence of
their period-luminosity (PL) relation. Although a general consensus on these
effects is still not achieved, classical Cepheids remain the most used primary
distance indicators. A possible extension of these standard candles to further
distances would be important. In this context, a very promising new tool is
represented by the ultra-long period (ULP) Cepheids (P \geq 80 days), recently
identified in star-forming galaxies. Only a small number of ULP Cepheids have
been discovered so far. Here we present and analyse the properties of an
updated sample of 37 ULP Cepheids observed in galaxies within a very large
metallicity range of 12+log(O/H) from ~7.2 to 9.2 dex. We find that their
location in the colour(V-I)-magnitude diagram as well as their Wesenheit (V-I)
index-period (WP) relation suggests that they are the counterparts at high
luminosity of the shorter-period (P \leq 80 days) classical Cepheids. However,
a complete pulsation and evolutionary theoretical scenario is needed to
properly interpret the true nature of these objects. We do not confirm the
flattening in the studied WP relation suggested by Bird et al. (2009). Using
the whole sample, we find that ULP Cepheids lie around a relation similar to
that of the LMC, although with a large spread (~0.4 mag).
[2]
oai:arXiv.org:1203.0026 [pdf] - 493624
Ultra Long Period Cepheids: a primary standard candle out to the Hubble
flow
Submitted: 2012-02-29
The cosmological distance ladder crucially depends on classical Cepheids
(with P=3-80 days), which are primary distance indicators up to 33 Mpc. Within
this volume, very few SNe Ia have been calibrated through classical Cepheids,
with uncertainty related to the non-linearity and the metallicity dependence of
their period-luminosity (PL) relation. Although a general consensus on these
effects is still not achieved, classical Cepheids remain the most used primary
distance indicators. A possible extension of these standard candles to further
distances would be important. In this context, a very promising new tool is
represented by the ultra-long period (ULP) Cepheids (P \geq 80 days), recently
identified in star-forming galaxies. Only a small number of ULP Cepheids have
been discovered so far. Here we present and analyse the properties of an
updated sample of 37 ULP Cepheids observed in galaxies within a very large
metallicity range of 12+log(O/H) from ~7.2 to 9.2 dex. We find that their
location in the colour(V-I)-magnitude diagram as well as their Wesenheit (V-I)
index-period (WP) relation suggests that they are the counterparts at high
luminosity of the shorter-period (P \leq 80 days) classical Cepheids. However,
a complete pulsation and evolutionary theoretical scenario is needed to
properly interpret the true nature of these objects. We do not confirm the
flattening in the studied WP relation suggested by Bird et al. (2009). Using
the whole sample, we find that ULP Cepheids lie around a relation similar to
that of the LMC, although with a large spread (~0.4 mag).
[3]
oai:arXiv.org:1012.0782 [pdf] - 1042365
UWISH2 -- The UKIRT Widefield Infrared Survey for H2
D.;
Froebrich;
J., C.;
Davis;
G.;
Ioannidis;
M., T.;
Gledhill;
M.;
Takami;
A.;
Chrysostomou;
J.;
Drew;
J.;
EislУЖffel;
A.;
Gosling;
R.;
Gredel;
J.;
Hatchell;
W., K.;
Hodapp;
N., M. S.;
Kumar;
W., P.;
Lucas;
H.;
Matthews;
G., M.;
Rawlings;
D., M.;
Smith;
B.;
Stecklum;
P., W.;
Varricatt;
T., H.;
Lee;
S., P.;
Teixeira;
A., C.;
Aspin;
T.;
Khanzadyan;
J.;
Karr;
-J., H.;
Kim;
-C., B.;
Koo;
J., J.;
Lee;
-H., Y.;
Lee;
Y., T.;
Magakian;
A., T.;
Movsessian;
H., E.;
Nikogossian;
S., T.;
Pyo;
T.;
Stanke
Submitted: 2010-12-03
We present the goals and preliminary results of an unbiased, near-infrared,
narrow-band imaging survey of the First Galactic Quadrant (10deg<l<65deg ;
-1.3deg<b<+1.3deg). This area includes most of the Giant Molecular Clouds and
massive star forming regions in the northern hemisphere. The survey is centred
on the 1-0S(1) ro-vibrational line of H2, a proven tracer of hot, dense
molecular gas in star-forming regions, around evolved stars, and in supernova
remnants. The observations complement existing and upcoming photometric surveys
(Spitzer-GLIMPSE, UKIDSS-GPS, JCMT-JPS, AKARI, Herschel Hi-GAL, etc.), though
we probe a dynamically active component of star formation not covered by these
broad-band surveys. Our narrow-band survey is currently more than 60% complete.
The median seeing in our images is 0.73arcsec. The images have a 5sigma
detection limit of point sources of K=18mag and the surface brightness limit is
10^-19Wm^-2arcsec^-2 when averaged over our typical seeing. Jets and outflows
from both low and high mass Young Stellar Objects are revealed, as are new
Planetary Nebulae and - via a comparison with earlier K-band observations
acquired as part of the UKIDSS GPS - numerous variable stars. With their
superior spatial resolution, the UWISH2 data also have the potential to reveal
the true nature of many of the Extended Green Objects found in the GLIMPSE
survey.
[4]
oai:arXiv.org:1006.4717 [pdf] - 194396
NGC 4262: a Virgo galaxy with an extended ultraviolet ring
Submitted: 2010-06-24
The Galaxy Ultraviolet Explorer (GALEX) satellite has recently shown the
presence of an extended, outer ring studded with UV-bright knots surrounding
the lenticular galaxy NGC 4262. Such a structure---not detected in the
optical---is coupled with a ring of atomic (HI) gas. We want to show that both
star-forming and HI rings surrounding this SB0 galaxy share the same radial
distance from the galaxy center and spatial orientation. We want also to model
the kinematics of the ring(s) and of the galaxy body. We make use of archive
FUV and NUV GALEX data plus HI observations from the literature. We confirm
that the UV-bright and atomic gas rings of NGC 4262 have the same extent and
projected spatial orientation. Their kinematics is not coupled with that of the
galaxy stars. It is possible that NGC 4262 has undergone a major gas stripping
event in the past which gave origin to the present "necklace" of UV-bright
knots.
[5]
oai:arXiv.org:0809.3947 [pdf] - 16630
The structure of the protoplanetary disk surrounding three young
intermediate mass stars. II. Spatially resolved dust and gas distribution
Fedele, D.;
Ancker, M. E. van den;
Acke, B.;
G.;
der Plas, van;
van Boekel, R.;
Wittkowski, M.;
Henning, Th.;
Bouwman, J.;
Meeus, G.;
Rafanelli, P.
Submitted: 2008-09-23
[Abridged] We present the first direct comparison of the distribution of the
gas, as traced by the [OI] 6300 AA emission, and the dust, as traced by the 10
micron emission, in the protoplanetary disk around three intermediate-mass
stars: HD 101412, HD 135344 B and HD 179218. N-band visibilities were obtained
with VLTI/MIDI. Simple geometrical models are used to compare the dust emission
to high-resolution optical spectra in the 6300 AA [OI] line of the same
targets. The disks around HD 101412 and HD 135344 B appear strongly flared in
the gas, but self-shadowed in the dust beyond ~ 2 AU. In both systems, the 10
micron emission is rather compact (< 2 AU) while the [OI] brightness profile
shows a double peaked structure. The inner peak is strongest and is consistent
with the location of the dust, the outer peak is fainter and is located at 5-10
AU. Spatially extended PAH emission is found in both disks. The disk around HD
179218 is flared in the dust. The 10 micron emission emerges from a double
ring-like structure with the first ring peaking at ~ 1 AU and the second at ~
20 AU. No dust emission is detected between ~ 3 -- 15 AU. The oxygen emission
seems also to come from a flared structure, however, the bulk of this emission
is produced between ~ 1 -- 10 AU. This could indicate a lack of gas in the
outer disk or could be due to chemical effects which reduce the abundance of OH
-- the parent molecule of the observed [OI] emission -- further away from the
star. The three systems, HD 179218, HD 135344 B and HD 101412, may form an
evolutionary sequence: the disk initially flared becomes flat under the
combined action of gas-dust decoupling, grain growth and dust settling.
[6]
oai:arXiv.org:0707.0269 [pdf] - 2736
Star formation in young star cluster NGC 1893
Submitted: 2007-07-02
We present a comprehensive multi-wavelength study of the star-forming region
NGC 1893 to explore the effects of massive stars on low-mass star formation.
Using near-infrared colours, slitless spectroscopy and narrow-band $H\alpha$
photometry in the cluster region we have identified candidate young stellar
objects (YSOs) distributed in a pattern from the cluster to one of the nearby
nebulae Sim 129. The $V, (V-I)$ colour-magnitude diagram of the YSOs indicates
that majority of these objects have ages between 1 to 5 Myr. The spread in the
ages of the YSOs may indicate a non-coeval star formation in the cluster. The
slope of the KLF for the cluster is estimated to be $0.34\pm0.07$, which agrees
well with the average value ($\sim 0.4$) reported for young clusters. For the
entire observed mass range $0.6 < M/M_\odot \le 17.7$ the value of the slope of
the initial mass function, $`\Gamma$', comes out to be $-1.27\pm0.08$, which is
in agreement with the Salpeter value of -1.35 in the solar neighborhood.
However, the value of $`\Gamma$' for PMS phase stars (mass range $0.6 <
M/M_\odot \le 2.0$) is found to be $-0.88\pm0.09$ which is shallower than the
value ($-1.71\pm0.20$) obtained for MS stars having mass range $2.5 < M/M_\odot
\le 17.7$ indicating a break in the slope of the mass function at $\sim 2
M_\odot$. Estimated $`\Gamma$' values indicate an effect of mass segregation
for main-sequence stars, in the sense that massive stars are preferentially
located towards the cluster center. The estimated dynamical evolution time is
found to be greater than the age of the cluster, therefore the observed mass
segregation in the cluster may be the imprint of the star formation process.
There is evidence for triggered star formation in the region, which seems to
govern initial morphology of the cluster.
[7]
oai:arXiv.org:0704.3678 [pdf] - 824
HD97048: a closer look to the disk
Submitted: 2007-04-27
Aims: Today, large ground-based instruments, like VISIR on the VLT, providing
diffraction-limited (about 0.3 arcsec) images in the mid-infrared where strong
PAH features appear enable us to see the flaring structure of the disks around
Herbig Ae stars.
Although great progress has been made in modelling the disk with radiative
transfer models able to reproduce the spectral energy distribution (SED) of
Herbig Ae stars, the constraints brought by images have not been yet fully
exploited. Here, we are interested in checking if these new observational
imaging constraints can be accounted for by predictions based on existing
models of passive centrally irradiated hydrostatic disks made to fit the SEDs
of the Herbig Ae stars.
Methods: The images taken by VISIR in the 8.6 and 11.3 microns aromatic
features reveal a large flaring disk around HD97048 inclined to the line of
sight. In order to analyse the spatial distribution of these data, we use a
disk model which includes the most up to date understanding of disk structure
and physics around Herbig Ae stars with grains in thermal equilibrium in
addition to transiently-heated PAHs.
Results: We compare the observed spatial distribution of the PAH emission
feature and the adjacent continuum emission with predictions based on existing
full disk models. Both SED and spatial distribution are in very good agreement
with the model predictions for common disk parameters.
Conclusions: We take the general agreement between observations and
predictions as a strong support for the physical pictures underlying our flared
disk model.