Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://vo.astronet.ru/arxiv/?get_articles=1&author=A
Äàòà èçìåíåíèÿ: Unknown
Äàòà èíäåêñèðîâàíèÿ: Tue Apr 12 19:40:26 2016
Êîäèðîâêà: koi8-r

Ïîèñêîâûå ñëîâà: ion drive
Full-text search for arXiv > astro-ph

sort results by

Use logical operators AND, OR, NOT and round brackets to construct complex queries. Whitespace-separated words are treated as ANDed.

Show articles per page in mode

A

Normalized to: A.

3 article(s) in total. 184 co-authors, from 1 to 2 common article(s). Median position in authors list is 22,0.

[1]  oai:arXiv.org:1503.08774  [pdf] - 972710
Observational Tracking of the 2D Structure of Coronal Mass Ejections Between the Sun and 1 AU
Comments: Published in Solar Physics in 2012. This is a a pre-acceptance draft. 6 Figures
Submitted: 2015-03-30
The Solar TErrestrial RElations Observatory (STEREO) provides high cadence and high resolution images of the structure and morphology of coronal mass ejections (CMEs) in the inner heliosphere. CME directions and propagation speeds have often been estimated through the use of time-elongation maps obtained from the STEREO Heliospheric Imager (HI) data. Many of these CMEs have been identified by citizen scientists working within the SolarStormWatch project ( www.solarstormwatch.com ) as they work towards providing robust real-time identification of Earth-directed CMEs. The wide field of view of HI allows scientists to directly observe the two-dimensional (2D) structures, while the relative simplicity of time-elongation analysis means that it can be easily applied to many such events, thereby enabling a much deeper understanding of how CMEs evolve between the Sun and the Earth. For events with certain orientations, both the rear and front edges of the CME can be monitored at varying heliocentric distances (R) between the Sun and 1 AU. Here we take four example events with measurable position angle widths and identified by the citizen scientists. These events were chosen for the clarity of their structure within the HI cameras and their long track lengths in the time-elongation maps. We show a linear dependency with R for the growth of the radial width (W) and the 2D aspect ratio (X) of these CMEs, which are measured out to ~0.7 AU. We estimated the radial width from a linear best fit for the average of the four CMEs. We obtained the relationships W=0.14R+0.04 for the width and X=2.5R+0.86 for the aspect ratio (W and R in units of AU).
[2]  oai:arXiv.org:1502.01529  [pdf] - 969843
MAGIC observations of MWC 656, the only known Be/BH system
Aleksiä‡, J.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Bangale, P.; Barrio, J. A.; Gonzö¡lez, J. Becerra; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Bil, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Lotto, B.; Wilhelmi, E. de Oö±a; Mendez, C. Delgado; Prester, D. Dominis; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher, D.; Elsaesser, D.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; Lö¨pez, R. J. Garcö­a; Garczarczyk, M.; Terrats, D. Garrido; Gaug, M.; Godinoviä‡, N.; Muö±oz, A. Gonzö¡lez; Gozzini, S. R.; Hadasch, D.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hildebr, D.; Hose, J.; Hrupec, D.; Idec, W.; Kadenius, V.; Kellermann, H.; Knoetig, M. L.; Kodani, K.; Konno, Y.; Krause, J.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; Longo, F.; Lö¨pez, M.; Lö¨pez-Coto, R.; Lö¨pez-Oramas, A.; Lorenz, E.; Lozano, I.; Makariev, M.; Mallot, K.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martö­nez, M.; Mazin, D.; Menzel, U.; Mir, J. M.; a; Mirzoyan, R.; Moralejo, A.; Munar-Adrover, P.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nilsson, K.; Nishijima, K.; Noda, K.; Orito, R.; Overkemping, A.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Persic, M.; Poutanen, J.; Moroni, P. G. Prada; Pr, E.; ini; Puljak, I.; Reinthal, R.; Rhode, W.; Ribö¨, M.; Rico, J.; Garcia, J. Rodriguez; Rö¼gamer, S.; Saito, T.; Saito, K.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Sillanpö¤ö¤, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Stamerra, A.; Steinbring, T.; Storz, J.; Strzys, M.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terziä‡, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Tibolla, O.; Torres, D. F.; Toyama, T.; Treves, A.; Vogler, P.; Will, M.; Zanin, R.; Casares, J.; Moldö¨n, J.
Comments: Accepted for publication in A&A. 5 pages, 2 figures, 2 tables
Submitted: 2015-02-05, last modified: 2015-02-09
Context: MWC 656 has recently been established as the first observationally detected high-mass X-ray binary system containing a Be star and a black hole (BH). The system has been associated with a gamma-ray flaring event detected by the AGILE satellite in July 2010. Aims: Our aim is to evaluate if the MWC 656 gamma-ray emission extends to very high energy (VHE > 100 GeV) gamma rays. Methods. We have observed MWC 656 with the MAGIC telescopes for $\sim$23 hours during two observation periods: between May and June 2012 and June 2013. During the last period, observations were performed contemporaneously with X-ray (XMM-Newton) and optical (STELLA) instruments. Results: We have not detected the MWC 656 binary system at TeV energies with the MAGIC Telescopes in either of the two campaigns carried out. Upper limits (ULs) to the integral flux above 300 GeV have been set, as well as differential ULs at a level of $\sim$5% of the Crab Nebula flux. The results obtained from the MAGIC observations do not support persistent emission of very high energy gamma rays from this system at a level of 2.4% the Crab flux.
[3]  oai:arXiv.org:astro-ph/9812096  [pdf] - 104203
AGILE: a Gamma-Ray Mission for a Light Imaging Detector
Comments: 4 pages, LATEX text, style file and two postscript figures included. To appear in the Proceedings of the conference: "Dal nano- al Tera-eV: tutti i colori degli AGN", Rome 18-21 May 1998, to be published by the Memorie della Societa' Astronomica Italiana
Submitted: 1998-12-04
AGILE is an innovative, cost-effective gamma-ray mission proposed to the ASI Program of Small Scientific Missions. It is planned to detect gamma-rays in the 30 MeV - 50 GeV energy band and operate as an {\bf Observatory} open to the international community. Primary scientific goals include the study of AGNs, gamma-ray bursts, Galactic sources, unidentified gamma-ray sources, solar flares, and diffuse gamma-ray emission. AGILE is planned to be operational during the year 2001 for a 3-year mission. It will ideally `fill the gap' between EGRET and GLAST, and support ground-based multiwavelength studies of high-energy sources.