Документ взят из кэша поисковой машины. Адрес оригинального документа : http://selena.sai.msu.ru/Symposium/sternber.doc
Дата изменения: Mon Oct 6 18:10:07 2008
Дата индексирования: Thu Feb 27 20:24:22 2014
Кодировка:

Поисковые слова: comet

What Did They Do on the Moon?
A Proposal for an International Atlas of Lunar Exploration


Philip J. Stooke

Department of Geography
University of Western Ontario
London, Ontario, Canada N6A 5C2

Introduction. The exploration of the Moon by spacecraft began in 1959
with the impact of Luna 2 and the first photography of the far side by Luna
3. On the fortieth anniversary of these pioneering flights it is
appropriate to look back at the history of lunar exploration. What was
accomplished by missions which succeeded? What was attempted by missions
which failed? What dreams were fulfilled, and what others never came to
fruition? I propose the creation of an International Atlas of Lunar
Exploration to tell this story in cartographic form. It would provide a
detailed record of the subject, capable of serving as a foundation for
future scholarship in the planetary sciences and in space history.

Justification. Consider a few simple questions, such as might be asked by
anybody with an interest in space exploration. Where did Surveyor 1 land?
What did Luna 12 accomplish? Where would the Apollo 13 astronauts have
walked if they had landed? What experiments were performed by the Lunokhod
2 rover? These questions can be answered superficially by means of readily
available resources: Surveyor 1 landed in the Flamsteed region of Oceanus
Procellarum, Luna 12 took photographs from lunar orbit, and so on. These
are not complete answers, however. Where exactly is the Surveyor 1 landing
site relative to individual hills and craters? What features were observed
at the landing site? Which parts of the Moon did Luna 12 photograph? What
did the images show? No single existing resource compiles this information
in detail.

To answer these questions fully, a more thorough presentation of results is
required. It is not enough to know that a spacecraft landed near a
particular named feature, or even that it landed at a specific latitude and
longitude. The location can only be portrayed precisely and usefully in a
series of nested maps of increasing scale, maps which bridge the gap
between regional overviews and very large scale charts of the lander's
surroundings. At the site itself, what activities were undertaken? This
question can also be answered cartographically, by showing plans of
trenches dug by a sampler arm, the route of a rover, the locations of
compositional or mechanical properties experiments, and so on. For orbital
missions, the extent of photography or other observations can be plotted on
maps, and photomosaics or other presentations of data can be compiled to
portray results. In the case of Luna 12, for instance, the very limited
western sources available for this mission include only two small frames of
high resolution photography without any context information to identify the
targets.

Sources of Information. Most of the information needed to answer these
questions already exists in obscure technical reports on individual
missions. The proposed atlas would gather this material from both Russian
and American reports in one convenient and accessible reference work.
Extensive use would be made of existing maps and photomosaics, both to
reduce preparation time and cost and with the important secondary goal of
illustrating the history of lunar cartography in this period. Relatively
few new maps would have to be drawn. Many new products would be based
primarily on spacecraft images rather than drawn maps, which will also
reduce costs and help illustrate the primary data products of the principal
lunar missions. Thus, the Surveyor 1 landing site might be located on Lunar
Orbiter images, and the Lunar Prospector impact site on Clementine images.
Therefore spacecraft images will also be an important resource.

The resources indicated above are technical reports, existing maps and
image data. All should be readily available. Both Russian and U.S.
technical reports on all missions should be easy to locate, particularly
with involvement by participants from both countries. Similarly, all
necessary maps are readily available. U.S. mission images can be obtained
via the Planetary Data System or through the network of Regional Planetary
Image Facilities. Russian images of the Moon would probably be available
in hardcopy, and interesting mapping projects such as the preparation of
mosaics from scanned prints of these images might be undertaken as part of
the preparation of the atlas. An additional benefit of that procedure
would be that the images would become available in digital format for new
scientific and cartographic uses. Similarly, some Surveyor mission
composites of many images might be scanned and reprojected to a panorama
format for presentation in the atlas.

Editorship. A project of this magnitude and international scope requires
a highly qualified editorial board including experts in the field drawn
from several institutions. It will be particularly important to involve a
prominent editor from Russia in order to facilitate access to materials
from institutions in that country and to be sure its pioneering role is
fully reflected in the atlas. The need for access to U.S. maps and image
data sets dictates the involvement of the U.S. Geological Survey or a
scholar with close ties to that agency. I would anticipate a three-person
editorial board including representation from the U.S. and Russia, with
additional editorial assistance where appropriate for individual sections
of the atlas.

Scope

Successfully flown missions alone do not tell the full story of lunar
exploration. Some flights fail and others do not proceed beyond the
planning stage, but possible targets or surface activities can be
portrayed. Additional sections of the atlas could present telescopic maps
and contemporary thematic data sets (magnetic fields, elemental
distributions, lineaments, transient lunar phenomena etc.) to place Space
Age exploration in its historical and scientific context.

Example
The illustration on the following page portrays NASA's Ranger 9 mission of
1965 in very condensed form. Actual and alternative targets are shown in
Figure 1. Figures 2 to 5 show the impact point in increasing detail. The
criterion for scale selection is that the major features in each map should
be discernable in the previous map. The sequence ends with a post-mission
photograph from Apollo 16 showing the crater formed by the impact of Ranger
9. In the atlas, each map might occupy half a larger format page,
revealing much more detail. There may be at least one more step in the
sequence, between Figures 2 and 3, as well as a diagram of the trajectory
of Ranger 9 showing flight events such as course corrections. At least one
map might be replaced with a mosaic of Ranger images to illustrate the
nature of the data obtained, and the text would be expanded beyond the
brief captions shown here. Nevertheless, this set of maps and similar
coverage of all other missions and proposals would record our first steps
off Earth in unprecedented detail. Publication might be targeted for 2007
or 2009, the fiftieth anniversaries of Sputnik 1 and Luna 3 respectively.
Following this first step, a similar volume devoted to Mars might follow in
about 2019 (the fiftieth anniversary of Apollo 1), by which time several
sample collection missions may have been completed and plans for human
expeditions may be well developed.
[pic]