Документ взят из кэша поисковой машины. Адрес оригинального документа : http://selena.sai.msu.ru/Pug/PugE.htm
Дата изменения: Tue Apr 28 15:56:06 2015
Дата индексирования: Sat Apr 9 22:29:48 2016
Кодировка:

Поисковые слова: propulsion
Svetlana G. Pugacheva

Svetlana G. Pugacheva

Russian

Contact information

Svetlana G. Pugacheva

Publications

ANOMALIES OF THE MOON’S THERMAL EMISSION IN THE IR SPECTRAL RANGE (10.5 - 12.5 micron).

S. G. Pugacheva. Sternberg State Astronomical Institute, Moscow, 119899, Russia, pugach@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 34, October 8-9, 2001, Moscow, Russia

MS058.pdf - 567KB


PHYSICAL AND MINERALOGY CHARACTERISTICS OF THE LUNAR REGOLITH IN THE AREAS OF THE THERMAL ANOMALIES.

S. G. Pugacheva, V.V. Shevchenko. Sternberg State Astronomical Institute, Moscow University, Russia, pugach@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia

ms080.pdf - 533KB


THE PARAMETERS INVOLVED IN HAPKE’S MODEL FOR ESTIMATION OF THE COMPOSITION OF THE EJECTA LUNAR TERRAINS.

S.G. Pugacheva, V.V.
Shevchenko. Sternberg State Astronomical Institute, Moscow University, 13 Universitetsky pr., 119992 Moscow, Russia, pugach@sai.msu.ru.
Brown University - Vernadsky Institute Microsymposium 42, October 10-12, 2005, Moscow, Russia

m42_60.pdf - 43KB


THE PHOTOMETRIC RESEARCHS OF THE MERCURY’S SURFACE BY MEANS OF DIGITAL MODELS.

S.G. Pugacheva. Sternberg State Astronomical Institute, Moscow
University, 13 Universitetsky pr., 119992 Moscow, Russia, pugach@sai.msu.ru.

m44_70_pugacheva.pdf - 204KB


Structure of the South Pole–Aitken Lunar Basin

V. V. Shevchenko, V. I. Chikmachev, and S. G. Pugacheva
Sternberg State Astronomical Institute, Lomonosov Moscow State University, Universitetskii pr. 13, Moscow, 119899 Russia
Received April 10, 2007

Abstract

The hypsometric map and the basin height profiles, for the first time relying upon a spherical daturence surface, have been constructed based on the generalization of the heights measured within the hemisphere including the ring structure of the South Pole–Aitken basin. The distribution of the major chemical elements (Fe and Th), depending upon the structure height levels, has been obtained. The relationship between these lunar rock indicators and the height levels of the rock preferential distribution has been revealed. The outer basin ring has been distinguished and the ring structure of the central basin depression has been revealed against a combined hypsometric and geochemical background. A total basin diameter of about 3500 km has been reliably determined for the first time. A unique feature of the basin structure consists in that the arrangement of the basin inner rings does not show a central circular symmetry, which can indicate that a hypothetical impactor moved along the trajectory (or orbit) oriented almost normally to the ecliptic plane. In combination with the revealed very small depth–diameter ratio in the initial basin structure, this circumstance makes it possible to put forward the hypothesis that a comet impact produced the South Pole–Aitken basin.

SSR447.pdf - 1612KB


THE CHEMICAL COMPOSITION OF REGOLITH AT THE MOON’S SOUTH POLE, ACCORDING TO DATA OF LUNAR PROSPECTOR AND LUNAR RECONNAISSANCE ORBITER MISSIONS.

 S. G. Pugacheva and V. V. Shevchenko, Sternberg State Astronomical Institute, Moscow University, 13 Universitetsky pr., 119992 Moscow, Russia, pugach@sai.msu.ru.

Pugacheva LPS 41.pdf - 208Kб

 


Contact information

Telefone: 095-939-16-49,

E-mail:

to top of page

Return

Return

Department of Lunar and Planetary Research

Department of Lunar
and Planetary Research


Copyright © 1998-2014.    All rights reserved.    Webmaster 
Last revised: 04.28.2015 15:56:06