Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://selena.sai.msu.ru/Home/Publications/Publications.htm
Дата изменения: Tue May 5 23:35:57 2015 Дата индексирования: Sat Apr 9 23:02:48 2016 Кодировка: Windows-1251 Поисковые слова: planetary nebula |
Бережной А.А., Клумов Б.А., Фортов В.Е., Шевченко В.В.
Письма в ЖЭТФ, Т. 63, N6, С. 387-391, 1996
Эту статью можно найти на сервере журнала Письма в ЖЭТФ.
Бережной А.А., Клумов Б.А.
Письма в ЖЭТФ, Т. 68, N2, С. 150-154, 1998
Эту статью можно найти на сервере журнала Письма в ЖЭТФ.
А.А.Бережной, Государственный Астрономический Институт им. Штернберга, 1999.
Резюме.
Проведено моделирование теплового режима грунта холодных ловушек на Луне на глубине до нескольких метров. Показано, что если температура в холодных ловушках на глубине 1-2 см практически не отличается от температуры поверхности, то в состав полярных льдов входят H2O, SO2, CO2. Если же в холодных ловушках образуется теплоизоляционный слой, как в экваториальных районах, то температура на глубине 1-2 м на 50-60 K выше, чем на поверхности, и включение в состав полярных отложений SO2 и CO2 вряд ли возможно. Результаты расчетов средней температуры грунта холодных ловушек можно проверить при проведении наблюдений теплового излучения грунта холодных ловушек в области длин волн 0.1 мм - 10 см. Если будет обнаружено, что средняя яркостная температура полярных лунных районов практически не увеличивается с длиной волны, то этот факт можно рассматривать как косвенное доказательство наличия водяного льда.
RadioMoon.doc - 87KB.
RadioMoon.pdf - 100KB.
Более подробное описание моих научных исследований и научное сообщение о моей работе за 2000 год содержится на сайте информационной системы "Наука и инновации"
aref.doc - 50 KB
aref.pdf - 157 KB.
Berezhnoi A.A., Gusev S.G., Khavroshkin O.B., Poperechenko B.A., Shevchenko V.V., Tzyplakov V.A.
p. 179-181, ESTEC, Noordwijk, The Netherlands, 10-14 July 2000
LP-Moon.pdf - 26KB
Berezhnoi A.A., Klumov B.A.
p. 175-178, ESTEC, Noordwijk, The Netherlands, 10-14 July 2000
ILEWG4.pdf - 58KB
You can see fist two articles on JETP Letters Online.
A. A. Berezhnoy1,2, N. Hasebe1, M. Kobayashi1, G. Michael3 and N. Yamashita1 1Advanced Research Institute for Science and Engineering, Waseda University, Tokyo, Japan 2Sternberg Astronomical Institute, Moscow, Russia 3German Aerospace Center, Institute for planetary research, Berlin, Germany
Brown University - Vernadsky Institute Microsymposium 40, 2004, Moscow, Russia
09_Berezhnoy_etal.pdf - 207KB
N. Hasebe1, M.-N. Kobayashi1, T. Miyachi1, O. Okudaira1, Y. Yamashita1, E. Shibamura2, T. Takashima3, A.A.Brezhnoy1, 1Advanced Research Institute for Science and Engineering, Waseda University (Tokyo 169-8555, Japan), 2Saitama Prefectural University (Koshigaya, Saitama 343-8540, Japan), 3Institute of Space and Astronautical Science, JAXA (Sagamihara, Kanagawa 229-8510, Japan), 4Sternberg Astronomical Institute, Moscow State Univ.
Brown University - Vernadsky Institute Microsymposium 40, 2004, Moscow, Russia
28_Hasebe_etal.pdf - 161KB
N. Yamashita1, N. Hasebe1, M. -N. Kobayashi1, T. Miyachi1, O. Okudaira1, E. Shibamura2, A. A. Berezhnoy1,3, 1Advanced Research Institute for Science and Engineering, Waseda Univ., 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 Japan (nao.yamashita@toki.waseda.jp), 2Saitama Prefectural University, 3Sternberg Astronomical Institute.
Brown University - Vernadsky Institute Microsymposium 40, 2004, Moscow, Russia
88_Yamashita et_al.pdf - 253KB
A.A. Berezhnoy a,*, N. Hasebe a, M. Kobayashi a, G. Michael b, N. Yamashita a
a Advanced Research Institute for Science and Engineering, Waseda University,
3-4-1 Okubo, Shinjuku-ku, 169-8555 Tokyo, Japan
b German Aerospace Centre, Institute for Planetary Research, Rutherfordstr. 2,
12489 Berlin-Adlershof, Germany
Received 16 August 2004; received in revised form 27 January 2005; accepted 1
March 2005
Abstract
A comparison between the abundances of major elements on the Moon determined by Lunar Prospector gamma ray spectrometer and those in returned lunar samples is performed. Lunar Prospector shows higher Mg and Al content and lower Si content in western maria in comparison with the lunar sample collection. Lunar Prospector overestimated the Mg content by about 20%. There are no elemental anomalies at the lunar poles: this is additional evidence for the presence of polar lunar hydrogen. Using Mg, Fe, and Al abundances, petrologic maps containing information about the abundances of ferroan anorthosites, mare basalts, and Mgrich rocks are derived. This approach is useful for searching for cryptomaria and Mg-rich rocks deposits on the lunar surface. A search is implemented for rare rock types (dunites and pyroclastic deposits). Ca-rich, Al-low small-area anomalies are detected in the far side highlands.
7305CorrectedProof.pdf - 218KB
Klim I.Churyumov1, Igor V.Luk'yanyk1, Alexei A.Berezhnoi2,3, Vahram H.Chavushyan2, Leo Sandoval4 and Alejandro A.Palma2,4
1Astronomical Observatory, Kyiv National Shevchenko University, Kyiv,
Ukraine;
2Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Puebla,
Mexico;
3Sternberg Astronomical Institute, Moscow, Russia;
4Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
March 24, 2002
Abstract.
Preliminary analysis of middle resolution optical spectra of comet C/2000 WM1 (LINEAR) obtained on November 22, 2001 is given. The emission lines of the molecules C2, C3, CN, NH2, H2O+ and presumably CO (Asundi and triplet bands), C−2 were identified in these spectra. By analyzing the brightness distributions of the C2, C3, CN emission lines along the spectrograph slit we determined some physical parameters of these neutral molecules - the velocity of expansion of molecules within the coma and their lifetimes. The Franck-Condon factors for the CO Asundi bands and C−2 bands were calculated by using a Morse potential model.
EarthMoonPlanets2002.pdf - 218KB
V. Grimalsky1, A. Berezhnoy2, 3, A. Kotsarenko4, N. Makarets5, S. Koshevaya6, and R. P´erez Enr´ıquez4
1Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Puebla,
Mexico
2Advanced Research Institute for Science and Engineering, Waseda University,
Tokyo, Japan
3Now at: Sternberg Astronomical Institute, Moscow University, Moscow, Russia
4Centro de Geociencias, Juriquilla, UNAM, Quer´etaro, Mexico
5Kyiv National Shevchenko University, Faculty of Physics, Kyiv, Ukraine
6Universidad Autonoma del Estado de Morelos (UAEM), CIICAp, Cuernavaca, Mexico
Received: 30 June 2004 - Revised: 23 November 2004 - Accepted: 24 November 2004
- Published: 30 November 2004
Abstract.
The results of recent observations of the nonthermal electromagnetic (EM) emission at wavelengths of 2.5 cm, 13 cm, and 21 cm are summarized. After strong impacts of meteorites or spacecrafts (Lunar Prospector) with the Moon's surface, the radio emissions in various frequency ranges were recorded. The most distinctive phenomenon is the appearance of quasi-periodic oscillations with amplitudes of 3-10K during several hours. The mechanism concerning the EM emission from a propagating crack within a piezoactive dielectric medium is considered. The impact may cause the global acoustic oscillations of the Moon. These oscillations lead to the crackening of the Moon's surface. The propagation of a crack within a piezoactive medium is accompanied by the excitation of an alternative current source. It is revealed that the source of the EM emission is the effective transient magnetization that appears in the case of a moving crack in piezoelectrics. The moving crack creates additional non-stationary local mechanical stresses around the apex of the crack, which generate the non-stationary electromagnetic field. For the cracks with a length of 0.1-1μm, the maximum of the EM emission may be in the 1-10GHz range.
NathazardsEarthSystSci2004.pdf - 448KB
A.A. Berezhnoya,1, N. Hasebea, M. Kobayashia, G.G. Michaelb,_, O. Okudairaa,
N. Yamashitaa
aAdvanced Research Institute for Science and Engineering, Waseda University,
3-4-1 Okubo, Shinjuku-ku, 169-8555 Tokyo, Japan
bGerman Aerospace Centre, Institute for Planetary Research, Rutherfordstr. 2,
12489 Berlin-Adlershof, Germany
Received 24 March 2004; received in revised form 10 February 2005; accepted 20
February 2005
Abstract
We analyze preliminary Lunar Prospector gamma-ray spectrometer data. Al-Mg and Fe-Mg petrologic maps of the Moon show that Mg-rich rocks are located in Mare Frigoris, the South Pole Aitken basin, and in some cryptomaria. Analysis of distances of Lunar Prospector pixels from three end-member plane in Mg-Al-Fe space reveals existence of Ca-rich, Al-low small-area anomalies in the farside highlands. An Mg-Th-Fe petrologic technique can be used for estimation of abundances of ferroan anorthosites, mare basalts, KREEP basalts, and Mg-rich rocks.
PSS_1833.pdf - 1321KB
Alexey A. Berezhnoy a,b,∗, Boris A. Klumov c
a Sternberg Astronomical Institute, Moscow State University, Universitetskij pr.,
13, 119991 Moscow, Russia
b Rutgers University, Department of Chemistry and Chemical Biology, 610 Taylor
Road, Piscataway, NJ 08854-8087, USA
c Max-Planck-Institut für Extraterrestrische Physik, D-85740 Garching, Germany
Received 29 August 2007; revised 13 January 2008
Abstract
Chemical processes associated with meteoroid bombardment of Mercury are considered. Meteoroid impacts lead to production of metal atoms as well as metal oxides and hydroxides in the planetary exosphere. By using quenching theory, the abundances of the main Na-, K-, Ca-, Fe-, Al-, Mg-, Si-, and Ti-containing species delivered to the exosphere during meteoroid impacts were estimated. Based on a correlation between the solar photo rates and the molecular constants of atmospheric diatomic molecules, photolysis lifetimes of metal oxides and SiO are estimated. Meteoroid impacts lead to the formation of hot metal atoms (0.2-0.4 eV) produced directly during impacts and of very hot metal atoms (1-2 eV) produced by the subsequent photolysis of oxides and hydroxides in the exosphere of Mercury. The concentrations of impact-produced atoms of the main elements in the exosphere are estimated relative to the observed concentrations of Ca, assumed to be produced mostly by ion sputtering. Condensation of dust grains can significantly reduce the concentrations of impact-produced atoms in the exosphere. Na, K, and Fe atoms are delivered to the exosphere directly by impacts while Ca, Al, Mg, Si, and Ti atoms are produced by the photolysis of their oxides and hydroxides. The chemistry of volatile elements such as H, S, C, and N during meteoroid bombardment is also considered. Our conclusions about the temperature and the concentrations of impact-produced atoms in the exosphere of Mercury may be checked by the Messenger spacecraft in the near future and by BepiColombo spacecraft some years later.
IcarusCorrectedProof.pdf - 709KB
Alexey A. Berezhnoy*, Nobuyuki Hasebe, Takuji Hiramoto
Advanced Institute for Science and Engineering, Waseda University, 3-4-1 Okubo,
Shinjuku-ku,Tokyo 169-0071
* Also at Sternberg Astronomical Institute, Moscow State University, Moscow,
Russia
Email (AB)
iac02074@kurenai.waseda.jp and Boris A. Klumov Institute
of Dynamics of Geospheres, Moscow, Russia
(Received 2003 March 4)
Abstract
The presence of volatiles near lunar poles is studied. The chemical composition of a lunar atmosphere temporarily produced by comet impact is studied during day and night. C-rich and long-period comets are insufficient sources of water ice on the Moon. O-rich short-period comets deliver significant amounts of H2O, CO2, SO2, and S to the Moon. An observable amount of polar hydrogen can be delivered to the Moon by single impact of O-rich short-period comet with diameter of 5 km in the form of water ice. The areas where CO2 and SO2 ices are stable against the thermal sublimation are estimated as 300 and 1500 km2, respectively. If water ice exists in the 2 cm top regolith layer CO2 and SO2 ices can be stable in the coldest parts of permanently shaded craters. The delivery rate of elemental sulfur near the poles is estimated as 106 g/year. The sulfur content is estimated to be as high as 1 wt % in polar regions. The SELENE gamma-ray spectrometer can detect sulfur polar caps on the Moon if the sulfur content is higher than 1 wt %. This instrument can check the presence of hydrogen and minerals with unusual chemical composition at the lunar poles.
PASJ2449modified.pdf - 277KB
В. В. Бусарев
Московский гос. университет им. М. В. Ломоносова, Гос. астрономический институт им. П. К.Штернберга (ГАИШ МГУ), (полная версия статьи) ї 2015 г.Москва
Аннотация
В статье представлены и обсуждаются спектры отражения 40 астероидов Главного
пояса, полученные автором в Крымской лаборатории ГАИШ МГУ в 2003-2009 годах.
AB-15-1_Bus.pdf - 1576 KB
В.В. Бусарев (ГАИШ МГУ, Москва)
(предварительный вариант статьи, опубликованной в ?2(50) 2013 г. журнала "Наука
из первых рук")
Chelyabinskiy_bolid.doc - 7496KB
Бусарев В.В.
АВТОРЕФЕРАТ
диссертации на соискание ученой степени доктора
физико-математических наук.
Abstract.pdf- 454 KB.
ї 2011 г. В. В. Бусарев
Государственный астрономический институт им. П.К. Штернберга МГУ, Москва
Поступила в редакцию 21.12.2009 г.
АВ-11(Бусарев).pdf - 220 KB
В. В. Бусарев, ї 2010 г.
Государственный астрономический институт им. П.К. Штернберга МГУ, Москва
Поступила в редакцию 21.12.2009 г.
АВ-10(Бусарев).pdf - 251 KB
В.В.Бусарев, Государственный астрономический институт им.П.К.Штернберга, 2009.
Astrofiz methods.pdf - 570 КВ
V. V. Busarev1, M. V. Volovetskij2, M. N. Taran3, V. I. Fel'dman4, T. Hiroi5
and G. K. Krivokoneva6
1Sternberg State Astronomical Institute, Moscow University, 119992 Moscow,
Russia Federation (RF), e-mail:
busarev@sai.msu.ru ;
2Division of Mossbauer Spectroscopy, Physical Department of Moscow State
University, 119992 Moscow, RF
3 Institute of Geochemistry, Mineralogy and Ore Formation, Academy of Sciences
of Ukraine, 03142 Kiev, Ukraine;
4Division of Petrology, Geological Department of Moscow State University, 119992
Moscow, RF;
5Department of Geological Sciences, Brown University, Providence, Rhode Island
02912;
6All-Russia Research Institute of Mineral Resources (VIMS), 119017 Moscow, RF.
48th Vernadsky-Brown Microsymposium on Comparative Planetology, October 20-22,
2008, Moscow, abstract No. 6.
V-B- 2008(Bus_etal).doc - 169 KB
В.В.Бусарев, В.В.Прокофьева-Михайловская, В.В.Бочков.
УСПЕХИ ФИЗИЧЕСКИХ НАУК, Том 177, ?6, Июнь 2007г.
УФН-07(Бус-Прок-Боч).pdf - 293 KB
В. В. Прокофьева*, В. В. Бочков*, В. В. Бусарев**
*Научно-исследовательский институт Крымская астрофизическая обсерватория,
Украина; e-mail: prok@crao.crimea.ua
**Государственный астрономический институт им. П.К. Штернберга, Москва, Россия.
'Астрономический вестник', т. 39, ?5, с. 457-468, 2005
АВ-05(Прок-Боч-Бус).doc - 173 KB
V V Busarev, V V Prokof'eva-Mikhailovskaya, V V Bochkov
UFN2007(Bus_etal)(engl).PDF - 225 KB
V. V. Prokof'eva*, V. V. Bochkov*, and V. V. Busarev**
*Research Institute, Crimean Astrophysical Observatory, National Academy of
Sciences of Ukraine, p/o Nauchnyi, Crimea, 334413 Ukraine
**Sternberg Astronomical Institute, Universitetskii pr. 13, Moscow, 119899
Russia
Received November 25, 2004
Abstract
-A preliminary study of the surface of the asteroid 21 Lutetia with ground-based methods is of significant importance, because this object is included into the Rosetta space mission schedule. From August 31 to November 20, 2000, about 50 spectra of Lutetia and the same number of spectra of the solar analog HD10307 (G2V) and regional standards were obtained with a resolution of 4 and 3 nm at the MTM-500 telescope television system of the Crimean astrophysical observatory. From these data, the synthetic magnitudes of the asteroid in the BRV color system have been obtained, the reflected light fluxes have been determined in absolute units, and its reflectance spectra have been calculated for a range of 370-740 nm. In addition, from the asteroid reflectance spectra obtained at different rotation phases, the values of the equivalent width of the most intensive absorption band centered at 430-440 nm and attributed to hydrosilicates of the serpentine type have been calculated. A frequency analysis of the values V (1, 0) confirmed the rotation period of Lutetia 0.d3405 (8.h172) and showed a two-humped light curve with a maximal amplitude of 0.m25. The color indices B-V and V-R showed no noticeable variations with this period. A frequency analysis of the equivalent widths of the absorption band of hydrosilicates near 430-440 nm points to the presence of many significant frequencies, mainly from 15 to 20 c/d (c/d is the number of cycles per day), which can be caused by a heterogeneous distribution of hydrated material on the surface of Lutetia. The sizes of these heterogeneities (or spots) on the asteroid surface have been estimated at 3-5 to 70 km with the most frequent value between 30 and 40 km.
SSR-05(Prok-Boch-Bus).pdf - 208 KB
Бусарев В. В., ГАИШ МГУ, E-mail: busarev@sai.msu.ru
Выполненные нами в разные годы спектральные исследования показывают, что S-астероиды 11 Партенопа и 198 Ампелла, M-астероиды 201 Пенелопа и 21 Лютеция имеют особенности состава вещества, не согласующиеся с их спектральными типами.
OZA2007(Busarev).pdf - 701 KB
V. V. BUSAREV, Sternberg State Astronomical Institute, Moscow University,
Russian Federation (RF) (E-mail: busarev@sai.msu.ru);
V. A. DOROFEEVA, Vernadsky Institute of Geochemistry, Russian Academy of
Sciences (RAS), Moscow, RF;
A. B. MAKALKIN, Institute of Earth Physics, RAS, Moscow, RF
Abstract.
Visible-range absorption bands at 600-750 nm were recently detected on two
Edgeworth-Kuiper Belt (EKB) objects (Boehnhardt et al., 2002). Most probably the
spectral features may be attributed to hydrated silicates originated in the
bodies. We consider possibilities for silicate dressing and silicate aqueous
alteration within them. According to present models of the protoplanetary disk,
the temperatures and pressures at the EKB distances (30-50 AU) at the time of
formation of the EKB
objects (106 to 108 yr) were very low (15-30 K and 10−9-10−10 bar). At these
thermodynamic conditions all volatiles excluding hydrogen, helium and neon were
in the solid state. An initial mass fraction of silicates (silicates/(ices +
dust)) in EKB parent bodies may be estimated as 0.15-0.30.
Decay of the short-lived 26Al in the bodies at the early stage of their
evolution and their mutual collisions (at velocities ≥1.5 km s−1) at the
subsequent stage were probably two main sources of their heating, sufficient for
melting of water ice. Because of the former process, large EKB bodies (R ≥ 100
km) could contain a large amount of liquid water in their interiors for the
period of a few 106 yr. Freezing of the internal ocean might have begun at ≈ 5 ×
106 yr after formation of the solar nebula (and CAIs). As a result, aqueous
alteration of silicates in the bodies could occur.
A probable mechanism of silicate dressing was sedimentation of silicates with
refractory organics, resulting in accumulation of large silicate-rich cores.
Crushing and removing icy covers under collisions and exposing EKB bodies'
interiors with increased silicate content could facilitate detection of
phyllosilicate spectral features.
EM&P2003(Bus-Dor-Mak).pdf - 105 KB
V.V. Busarev, Sternberg Astronomical Institute (SAI), Moscow University,
Universitetskij pr., 13, Moscow, 119992
Russia, busarev@sai.msu.ru.
ACM08(Bus).pdf - 120 KB
V. V. Busarev1, V. V. Prokof'eva2, and V. V. Bochkov2
1 Sternberg State Astronomical Institute, Moscow University, Universitetskij
pr., 13, Moscow 119992, Russian Federation, e-mail:
busarev@sai.msu.ru;
2 Research Institute Crimean Astrophysical Observatory, p/o Nauchnyi, Crimea
334413, Ukraine, e-mail:
prok@crao.crimea.ua
m44_14_busarev_etal.pdf - 93 KB
V. V. Busarev1, M. N. Taran2, V.
I. Fel'dman3 and V. S. Rusakov4
1 Lunar and Planetary Department, Sternberg State
Astronomical Institute, Moscow State University, 119992 Moscow, Universitetskij
pr., 13, Russian Federation (RF); e-mail: busarev@sai.msu.ru;
2 Department of
Spectroscopic Methods, Institute of Geochemistry, Mineralogy and Ore Formation,
Academy of Sciences of Ukraine, 03142 Kiev, Palladina pr., 34, Ukraine;
3
Division of Petrology, Geological Department of Moscow State University, 119992
Moscow, RF;
4 Division of Mossbauer Spectroscopy, Physical Department of Moscow
State University, 119992 Moscow, RF.
Brown University - Vernadsky Institute Microsymposium 40, 2004, Moscow, Russia
15_Busarev_etal.pdf - 276 KB
A. B. Makalkin, Institute of Earth Physics, RAS, Moscow, RF (e-mail: makalkin@uipe-ras.scgis.ru); Dorofeeva, V. A. Vernadsky
Institute of Geochemisry, (RAS), Moscow, RF (e-mail: dorofeeva@geokhi.ru); V. V. Busarev, Sternberg State Astronomical Institute, Moscow University, RF; (e-mail: busarev@sai.msu.ru).
Brown University - Vernadsky Institute Microsymposium 38, October 27-29, 2003, Moscow, Russia
ms063.pdf - 242 KB
V.V. Busarev
Sternberg State Astronomical Institute, Moscow University, Moscow, Russian Federation; e-mail: busarev@sai.msu.ru.
Brown University - Vernadsky Institute Microsymposium 34, October 8-9, 2001, Moscow, Russia
MS058.pdf - 567 KB
V.V.Busarev
35th Lunar and Planetary Science Conference, 2004, Houston, Texas, Abstract 1026.
LPSC2004a.pdf - 79 KB
V. V. Busarev
32nd Lunar and Planetary Science Conference, March 12-16, 2001, Houston, Texas, Abstract 1927.
LPSC2001a.pdf - 56 KB
Бусарев В. В
В печати Terskol.pdf - 365 KB.
Экспериментальные
исследования.
Изучение небесных тел при помощи
телевидения.
Поляриметр "Таймыр".
ПЗС-камера
"Вега-202"
Аспирант Е.Н. Лазарев
Московский Государственный Университет Геодезии и Картографии
1_Гипсометрическая карта Венеры - методы создания и использования.pdf - 709KB
Аспирант Е.Н. Лазарев
Московский Государственный Университет Геодезии и Картографии
2_ГЕНЕРАЛИЗАЦИЯ ТОЧЕЧНЫХ МАССИВОВ ДАННЫХ ПОСРЕДСТВОМ ИСПОЛЬЗОВАНИЯ
ДОПОЛНИТЕЛЬНЫХ ВОЗМОЖНОСТЕЙ ГЕОИНФОРМАЦИОННЫХ СИСТЕМ.pdf - 498KB
Лазарев Евгений Николаевич
АВТОРЕФЕРАТ
диссертации на соискание ученой степени кандидата технических наук
Москва - 2008
Автореферат.pdf - 599KB
Лазарев Евгений Николаевич
3_История картографирования Марса.pdf - 1598KB
Evgeniy Lazarev, Janna Rodionova
Evgeniy Lazarev; Moscow State University of Geodesy and Cartography (MIIGAiK);
121614, Osenniy bulvar, Moscow, Russia;
+7(495)412-6176, zhecka@inbox.ru
Dr. Janna Rodionova; Sternberg State Astronomical Institute;
119899, 13, Universitetskiy prospect, Moscow, Russia,
jeanna@sai.msu.ru
Abstract
The new hypsometric maps of Venus and the Moon should improve and accelerate studying the surfaces of these planets and relief-forming processes. Additionally, these maps should be useful for students and scientists. The hypsometric map of Venus is produced in Lambert equal-area azimuth projection. Its height contours are obtained using the Magellan altitude data. To create Lunar Subpolar relief map the authors obtained heights from the A. Cook et.al. raster image of South Lunar Subpolar region (latitudes from -60њ to -90њ) being constructed in stereographic projection. [A.C. Cook, T.R. Watters, M.S. Robinson et.al. (2000) JGR, Vol.105, E5, 12023-12033]. Morphometric investigations of Venus and Lunar South Pole region surface have been fulfilled using our databases. The height profiles of some lunar craters being situated here and detailed profiles of the whole this area created by us describe the features of this region surface with the high resolution up to 100 meters.
4_RASTER VENUS AND LUNAR MAPS AS A SOURCE FOR OBTAINING VECTOR TOPOGRAPHIC DATA.pdf - 1393KB
Evgeniy Lazarev1,2, Zhanna Rodionova2
1Moscow State University of Geodesy and Cartography (MIIGAiK) 105064,
Gorokhovskiy pereulok, 4, Moscow, Russia
zhecka@inbox.ru
2Sternberg State Astronomical Institute 119991, Universitetskiy prospect, 13,
Moscow, Russia jeanna@sai.msu.ru
5_THE LUNAR SUBPOLAR RELIEF MAP THE WAYS AND TECHNIQUES OF COM.pdf - 612KB
E. N. Lazarev1, 2, J. F. Rodionova2.
1Moscow State University of Geodesy and Cartography, 4 Gorokhovskiy per., Moscow
105064, Russia, e-mail: zhecka@inbox.ru,
2Sternberg State Astronomical Institute, 13 Universitetskiy pr., Moscow 119892,
Russia, e-mail: jeanna@sai.msu.ru
6_Automatic creation of the hypsometric map of Venus.pdf - 116KB
6_Automatic creation of the hypsometric map of Venus_MAP.pdf - 2928KB
1Shevchenko V.V., 2Shingareva K.B., 1,2Lazarev E.N , 1Rodionova J.F.
1Sternberg State Astronomical Institute (MSU) 119899, 13, Universitetskiy
prospect, Moscow, Russia,
2Moscow State University for Geodesy & Cartography (MIIGAiK), 105064, 4,
Gorokhovskiy pereulok, Moscow, Russia, zhecka@inbox.ru.
7_Automated creation of the lunar hypsometric map techniques of compiling.pdf - 325KB
Лазарев Е.Н., Родионова Ж.Ф., Шевченко В.В.
Издана новая Карта рельефа Венеры в масштабе 1:45 000 000, составленная в ГАИШ МГУ при участии кафедры картографии и геоинформатики на основе данных КА 'Магеллан' о высотах более 6 000 000 точек поверхности.
Лазарев Е. Н., Родионова Ж. Ф., Шевченко В. В.
RELIEF MAP OF VENUS3.doc - 979 KB
М.С.Лазарева1, Е.Н.Лазарев1,2, Ж.Ф. Родионова2.
1 Географический факультет МГУ им. М.В.Ломоносова
2 Государственный астрономический институт им. П.К. Штернберга МГУ им.
М.В.Ломоносова
lazareva_et_al_2013.pdf - 6724KB
B.H. Foing1, G. Michael1, G.R. Racca2, A. Marini2, M. Grande, J. Huovelin, J.-L.
Josset, H.U. Keller, A. Nathues, D. Koschny,
A. Malkki (SMART-1 Science and Technology Working Team)
1ESA Research and Scientific Support Dept., ESTEC/SCI-S
2ESA Science Projects Dept., ESTEC/SCI-PD Bernard.Foing@esa.int
Brown University - Vernadsky Institute Microsymposium 38,
October 27-29, 2003, Moscow, Russia
ms019.pdf - 130KB
Michael G. G., European
Space Agency, Research
and Scientific Support Department, ESA/ESTEC, Noordwijk, The Netherlands,
greg.michael@esa.int
Brown University - Vernadsky Institute Microsymposium 38,
October 27-29, 2003, Moscow, Russia
ms067.pdf - 636KB
Michael G. G.1, Chicarro A. F.1, Rodionova J.
F.2, Shevchenko V. V.2, Iluhina J.2,
Kozlova E. A.2
1European Space Agency, Research and Scientific Support Department, ESA/ESTEC,
Noordwijk, The Netherlands
2Sternberg Astronomical Institute, Moscow, greg.michael@esa.int
Brown University - Vernadsky Institute Microsymposium 38,
October 27-29, 2003, Moscow, Russia
ms068.pdf - 138KB
I.A. Ushkin1,
G. G. Michael2, E.A. Kozlova3 .
1. Moscow State University, Vorobjovy Gory,
119899, Moscow, Russia, gray_pigeon@mail.ru .
2. ESA, Noordwijk, the Netherlands. greg.michael@rssd.esa.int
3. Sternberg State Astronomical
Institute, 119899, Moscow, Russia.
Brown University - Vernadsky Institute Microsymposium 38,
October 27-29, 2003, Moscow, Russia
ms090.pdf - 387KB
I.A. Ushkin11, G. G. Michael2.
1. Moscow State University, Vorobjovy Gory,
119899, Moscow, Russia, gray_pigeon@mail.ru .
2. ESA, Noordwijk, the Netherlands.
greg.michael@rssd.esa.int.
Brown University - Vernadsky Institute Microsymposium 40,
2004, Moscow, Russia
81_Ushkin_Michael.pdf - 234KB
G. Michael 1, E. Hauber1, K. Gwinner1, R. Stesky2, F. Fueten3, D. Reiss1, H. Hoffmann1,
R. Jaumann1, G. Neukum4, T.
Zegers5, and the HRSC Co-Investigator Team
1Institute of Planetary Research,
German Aerospace Center
(DLR), Berlin, Germany
2Pangaea Scientific, Brockville, Ontario, Canada
3Department of Earth Sciences,
Brock University, St. Catharines, Ontario, Canada
4Remote Sensing of the Earth
and Planets, Freie Universitaet,
Berlin, Germany
5ESTEC, ESA, Noordwijk, The Netherlands
Brown University - Vernadsky Institute Microsymposium 42,
October 10-12, 2005, Moscow, Russia
m42_50.pdf - 102KB
Пугачева С.Г., Скобелева Т.П., Шевченко В.В.
В каталоге приведены названия морфологических типов рельефа Меркурия на русском и латинском языках, даны координаты объектов в гермесографической системе координат, а также исторические и библиографические сведения о происхождении названий.
S. G. Pugacheva and V. V. Shevchenko, Sternberg State Astronomical Institute, Moscow University, 13 Universitetsky pr., 119992 Moscow, Russia, pugach@sai.msu.ru.
Pugacheva LPS 41.pdf - 208KВ
С. Г. Пугачева, Ж. Ф. Родионова, В. В. Шевченко,
Т. П. Скобелева, К. И. Дехтярева, А. П. Попов.
Государственный Астрономический институт им. П.К. Штернберга, МГУ
Каталог лунной номенклатуры содержит список названий деталей
лунного рельефа. Для обозначения форм рельефа поверхности Луны установлена
единая система номенклатурных терминов, которые утверждены Генеральной
ассамблеей Международного астрономического Союза (МАС).
В каталоге 'Номенклатурный ряд названий лунного рельефа' приведены 1933 названия
деталей рельефа Луны на русском и латинском языках. Каталог построен на основе
справочника именованных лунных объектов, утвержденного Международным
Астрономическим Союзом (IAO/WGPSN). Список номенклатурного ряда названий
расположен в интернете на сайте Геологической службы США (USGS) [http://planetarynames.wr.usgs.gov/].
Nomenclature of lunar names.doc - 2758 KB
Nomenclature of lunar names.pdf - 2322 KB
V. V. Shevchenko, V. I. Chikmachev, and S. G. Pugacheva
Sternberg State Astronomical Institute, Lomonosov Moscow State University,
Universitetskii pr. 13, Moscow, 119899 Russia
Received April 10, 2007
Abstract
The hypsometric map and the basin height profiles, for the first time relying upon a spherical daturence surface, have been constructed based on the generalization of the heights measured within the hemisphere including the ring structure of the South Pole-Aitken basin. The distribution of the major chemical elements (Fe and Th), depending upon the structure height levels, has been obtained. The relationship between these lunar rock indicators and the height levels of the rock preferential distribution has been revealed. The outer basin ring has been distinguished and the ring structure of the central basin depression has been revealed against a combined hypsometric and geochemical background. A total basin diameter of about 3500 km has been reliably determined for the first time. A unique feature of the basin structure consists in that the arrangement of the basin inner rings does not show a central circular symmetry, which can indicate that a hypothetical impactor moved along the trajectory (or orbit) oriented almost normally to the ecliptic plane. In combination with the revealed very small depth-diameter ratio in the initial basin structure, this circumstance makes it possible to put forward the hypothesis that a comet impact produced the South Pole-Aitken basin.
SSR447.pdf - 1612KB
S.G. Pugacheva. Sternberg State Astronomical Institute, Moscow
University, 13 Universitetsky pr., 119992 Moscow, Russia,
pugach@sai.msu.ru.
m44_70_pugacheva.pdf - 204KB
S.G. Pugacheva, V.V.
Shevchenko. Sternberg State Astronomical Institute, Moscow University, 13
Universitetsky
pr., 119992 Moscow, Russia, pugach@sai.msu.ru.
Brown University - Vernadsky Institute Microsymposium 42,
October 10-12, 2005, Moscow, Russia
m42_60.pdf - 43KB
S. G. Pugacheva, V.V. Shevchenko. Sternberg
State Astronomical
Institute, Moscow University, Russia,
pugach@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 38,
October 27-29, 2003, Moscow, Russia
ms080.pdf - 533KB
S. G. Pugacheva. Sternberg State Astronomical Institute,
Moscow, 119899,
Russia, pugach@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 34,
October 8-9, 2001, Moscow, Russia
MS058.pdf - 567KB
С.Г. Пугачева, В.В. Шевченко, Государственный астрономический институт
им. П.К.Штернберга,
Московский университет, Москва, Россия, 1999.
Резюме.
Приводятся статистические данные по выборке имен лунных кратеров, названных в честь выдающихся астрономов.
nomen.doc - 187 KB.
nomen.pdf - 117 KB.
С.Г.Пугачева, Государственный астрономический институт им. П.К. Штернберга, Москва, Россия, 1999.
Резюме.
В настоящей работе рассматриваются вопросы реализации метода калибровки трех ИК-снимков поверхности Луны, переданных из космоса первым российским геостационарным искусственным спутником Земли "ГОМС". Изображение Луны сканируется одновременно с изображением Земли для калибровки изображений как стационарный источник видимого и ИК-излучения. Спектральный диапазон снимков в ИК-области составляет 10.5-12.5 мкм, в видимой области - 0.4-0.7 мкм. Приведена фазовая функция радиационной температуры лунной поверхности и графики пространственной индикатрисы теплового излучения.
ir_luna.doc - 458 KB.
ir_luna.pdf - 351 KB.
С.Г.Пугачева
Ж.Ф. Родионова, А.А.Карлов, Т.П. Скобелева и др. Под общей редакцией
В.В.Шевченко.
М.: Изд-во МГУ, 1987.- 173 с.
Приведены координаты, диаметры и морфологические признаки 14 923 кратеров Луны,
диаметром более 10 км. Морфологические признаки даны на основе анализа
космических снимков и современных фотографических атласов.
Для широкого круга исследователей, занимающихся изучением поверхности Луны и
сравнительной планетологией.
Zh. F. Rodionova and E. A. Kozlova
Государственный астрономический институт им. П.К.Штернберга, 1999.
Карты и глобусы Луны, созданные при участии отдела исследований Луны и планет
Резюме
Приведено краткое описание картографирования Луны, выполненного при участии сотрудников ГАИШ под научным руководством Ю.Н.Липского.
maps_r.doc - 697 KB.
maps_r.pdf - 398 KB.
J. F.
Rodionova, K. I. Dekchtyareva, A. A. Khramchikhin,
G. G. Michael, S. V. Ajukov,
S. G. Pugacheva,
V. V. Shevchenko.
Editors: V.V. Shevchenko, A.F. Chicarro. 2000.
J. F. Rodionova1, O. V. Elkina2, E. A. Kozlova1, V. V.
Shevchenko1, P.V. Litvin2.
1. Sternberg State Astronomical Institute, 119899,
Moscow,
Russia; jeanna@sai.msu ru.
2. Moscow State University, Vorobjovy Gory, 119899,
Moscow, Russia.
Brown University - Vernadsky Institute Microsymposium 34,
October 8-9, 2001, Moscow, Russia
MS059.pdf - 575KB
Rodionova J1.,
Iluhina J2., Michael G1,
1Sternberg State Astronomical Institute, jeanna@sai.msu.ru,
2Moscow University,
Brown University - Vernadsky Institute Microsymposium 34,
October 8-9, 2001, Moscow, Russia
MS060.pdf - 166KB
A.V. Dolitsky 1, J. F. Rodionova 2, R M. Kochetkov 3, A. F. Ainetdinova
2
1 - United Institute of Physics of the Earth of Russian Academy of Sciences
.Moscow, ab4870@mail.sitek.ru
2 - Sternberg State Astronomical Institute, Moscow.
jeanna@sai.msu.ru.
3 -
Moscow Technical University of communication and information,
krmkrm@rol.ru
Brown University - Vernadsky Institute Microsymposium 38,
October 27-29, 2003, Moscow, Russia
ms015.pdf - 202KB
J.A.Iluhina, A.V.Lagutkina, J.F.Rodionova.
Sternberg State Astronomical Institute, Moscow
University, jeanna@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 38,
October 27-29, 2003, Moscow, Russia
ms035.pdf - 2609KB
A.V.Dolitsky1, R.M.Kochetkov2, E.A. Kozlova3, J.F.Rodionova3,
1 - United Institute of Physics of
the Earth RAS, Moscow, av13868@comtv.ru,
2 - Moscow Technical University of
communication and information,
Moscow, krmkrm@rol.ru.
3 - Sternberg State Astronomical Institute, Moscow,
jeanna@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 40, 2004, Moscow, Russia
21_Dolitsky_etal.pdf - 683KB
E.N.Lasarev1, J. F. Rodionova 2,
1- Geographical faculty M.V.
Lomonosov Moscow State University,
2- Sternbrg Sate Astronomical Institute,
Universitetskij prospect 13, Moscow 119992,
jeanna@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 40, 2004, Moscow, Russia
56_Lasarev_Radionova.pdf - 230KB
B. D. Sitnikov., E.A. Kozlova, J.F. Rodionova.
Sternberg
State
Astronomical Institute, Moscow,
jeanna@sai.msu.ru.
Brown University - Vernadsky Institute Microsymposium 40,
2004, Moscow, Russia
78_Sitnikov_etal.pdf - 852KB
Ж.Ф.Родионова, Государственный астрономический институт им.П.К.Штернберга, 2009.
Mapping the history of the moon.pdf - 8186 КВ
Zh. F. Rodionova 1, J. A. Brekhovskikh2
1 Sternberg State Astronomical Institute Lomonosov Moscow University, Russia;
marss8@mail.ru
2 Space Research Institute, Moscow, Russia;
julia_br@iki.rssi.ru
Abstract. The new Hypsometric Globe of Mars is based on laser altimeter data of Mars Global Surveyor spacecraft. The diameter of the globe is 21 cm. Coordinates and the heights of 64 800 points on the surface of Mars were used for creating a 3-D Model of the surface of Mars.. A digital model of the relief was constructed with ArcGIS software. Contour lines were added together with hill-shading on the globe. The names of the main features - lands, plateaus, mountains, lowlands - plains and also some large craters are labeled. The places of landing sites of the spacecrafts are shown.
Rodionova ICC2013.pdf - 234 KB
М.С. ШИБАНОВА, Е.Н. ЛАЗАРЕВ, кандидат технических наук
Ж.Ф. РОДИОНОВА, кандидат физико-математических наук
ГАИШ МГУ
Zeml_Vsel_6_Shubanova_ 3-18---1.pdf - 1833 KB
Ж.Ф.РОДИОНОВА1, Ю.А.БРЕХОВСКИХ2, Е.Н.ЛАЗАРЕВ1,3, М.С. ЛАЗАРЕВА3, В.В.ШЕВЧЕНКО1
1- Государственный астрономический институт им.
П.К.Штернберга МГУ им. М.В.Ломоносова
2- Институт космических исследований РАН
3 -Географический факультет МГУ им. М.В.Ломоносова
rodionova_et_al_2013.pdf - 4733 KB
G. A
Leikin, A. N. Sanovich. Sternberg Astronomical Institute, Moscow 119899, Russia.
Brown University - Vernadsky Institute Microsymposium 34,
October 8-9, 2001, Moscow, Russia
MS047.pdf - 68KB
G. A.
Leikin and A. N. Sanovich, Sternberg State Astronomical Institute, Moscow State
University,
119992,Moscow,Universitetskij Prosp. 13, Russia ,
E-mail:san@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 38,
October 27-29, 2003, Moscow, Russia
ms059.pdf - 155KB
G. A. Leikin and A.N. Sanovich.
Sternberg State
Astronomical Institute, Moscow, State University, 119992, Moscow,
Universitetskij prosp. 13, Russia, E-mail:
san@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 40,
2004, Moscow, Russia
58_Leikin_Sanovich.pdf - 76KB
G.A. Leikin, A.N. and Sanovich,
Sternberg, State
Astronomical Institute Universitetsky Prosp. 13, Moscow 119992, Russia E-mail:
san@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 42,
October 10-12, 2005, Moscow, Russia
m42_46.pdf - 10KB
G. A. Leikin and A. N. Sanovich,
Sternberg State Astronomical Institute, Universitetsky Prosp. 13, Moscow 119892,
Russia, E-mail:san@sai.msu.ru
m44_56_leikin_sanovich.pdf - 73KB
E. A. Kozlova1, V. V. Shevchenko1 . Sternberg State Astronomical Institute,
119899, Moscow, Russia
Brown University - Vernadsky Institute Microsymposium 40,
2004, Moscow, Russia
50_Kozlova_Shevchenko.pdf - 212KB
Е.А.Козлова
Государственный астрономический институт им. П.К.Штернберга
Московского государственного университета им.М.В.Ломоносова, Россия
Поступила в редакцию 27.01.2004 г.
АСТРОНОМИЧЕСКИЙ ВЕСТНИК, 2004, том 38, ?5, с. 1-13
AstVest5_04KozlovaLO.pdf - 851KB
A.A. Berezhnoy (1), O.R. Baransky (2), K.I. Churyumov (2), V.V. Kleshchenok
(2), E.A. Kozlova (1), V. Mangano (3), V.O. Ponomarenko (2), Yu.V. Pakhomov (4),
V.V. Shevchenko (1), yu. I. Velikodsky (5)
(1) Sternberg Astronomical Institute, Universitetskij pr., 13, Moscow, 19991,
Russia.
(2) Shevchenko National University, Kiev, Ukraine
(3) Institute Astrophysics and Planetology from Space, INAF, Rome, Italy
(4) Institute of Astronomy, Russian Academy of Science, Pyatnitskaya Street 48,
Moscow, 119017 Russia
(5) Institute of Astronomy, Kharkiv National University, 35 Sumskaya Street
EPSC2012-52.pdf - 125KB
Berezhnoy A.A., Kozlova E.A., Shevchenko V.V.
в сборнике 36th Annual Lunar and Planetary Science Conference, серия Lunar and Planetary Institute Science Conference Abstracts, том 36, с. 1061 тезисы
Houston2005(1).pdf - 143 KB
Berezhnoy A.A., Kozlova E.A., Sinitsyn M.P., Shangaraev A.A., Shevchenko V.V.
в журнале Advances in Space Research, том 50, с. 1581-1712
DOI
издательство Pergamon Press Ltd. (United Kingdom)
ASR Origin and Stability.pdf - 395 KB
A.A. Berezhnoy (1), O.R. Baransky (2), K.I. Churyumov (2),
V.V. Kleshchenok (2), E.A. Kozlova (1), V. Mangano (3), V.O. Ponomarenko (2),
Yu.V. Pakhomov (4), V.V. Shevchenko (1), yu. I. Velikodsky (5)
(1) Sternberg Astronomical Institute, Universitetskij pr., 13, Moscow, 19991,
Russia.
(2) Shevchenko National University, Kiev, Ukraine
(3) Institute Astrophysics and Planetology from Space, INAF, Rome, Italy
(4) Institute of Astronomy, Russian Academy of Science, Pyatnitskaya Street 48,
Moscow, 119017 Russia
(5) Institute of Astronomy, Kharkiv National University, 35 Sumskaya Street
EPSC abstract
Vol. 7 EPSC2012-52 2012
European Planetary Congress 2012
EPSC2012-52.pdf - 125 KB
Berezhnoy A.A., Kozlova E.A., Shevchenko V.V.
в сборнике Lunar and Planetary Institute Science Conference Abstracts, серия Lunar and Planetary Institute Science Conference Abstracts, том 43, с. 1396 тезисы
LPSC 2012 1396.pdf - 215 KB
В.И.Чикмачев
ЗВЕЗДОЧЕТ ?2 2002, с.14-15
V. I. Chikmachev and V.V. Shevchenko,
Sternberg State Astronomical Institute, Moscow University, Universitetsky
13, Moscow, 119899 , Russia,
MICROSYMPOSIUM 34, Topics in Comparative Planetology October 8-9, 2001, Moscow,
Russia
MS015.pdf - 398 КВ.
В.И.Чикмачев, В.В.Шевченко, Государственный
астрономический институт имени П.К.Штернберга,
г. Москва, Россия, 1999.
Резюме.
Рассматривается история обнаружения гигантского бассейна в южной полярной области Луны, который по первым снимкам обратной стороны Луны был назван и утвержден МАС как "Море Мечты".
basin.doc - 262 KB.
basin.pdf - 344 KB.
V.I.Chikmachev, S.G.Pugacheva and V.V.Shevchenko, Sternberg State Astronomical
Institute, Moscow University, Moscow,
chik@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 40,
2004, Moscow, Russia
17_Chikmachev_etal.pdf - 356KB
Chikmachev, S.G.Pugacheva, Sternberg State Astronomical institute. Moscow
University,
Moscow. chik@sai.msu.ru.
Brown University - Vernadsky Institute Microsymposium 42,
October 10-12, 2005, Moscow, Russia
m42_12.pdf - 442KB
В.В.Шевченко, Государственный астрономический институт им. П.К.Штернберга, Московский университет, Москва, Россия, 1999.
Резюме.
Тезисы доклада на пленарном совместном заседании Комиссии Государственной Думы РФ по законодательному обеспечению проблем устойчивого развития и научного Экспертно-консультативного Совета при Комиссии по теме: О возможности применения ракетно-ядерного потенциала в интересах устойчивого развития России и мира , 28 июня 1999 года.
resource.doc - 56 KB.
resource.pdf - 113 KB.
В.В.Шевченко, Ж.Ф.Родионова, Государственный астрономический институт им.П.К.Штернберга, 1999.
Резюме.
Приводятся биографические данные Ю.Н.Липского, результаты его научной деятельности и краткая история образования отдела исследований Луны и планет.
lipsk-j.doc - 257 KB.
lipsk-j.pdf - 572 KB.
V.V.Shevchenko,
Sternberg State Astronomical Institute, Moscow University, Universitetsky 13,
Moscow 119899, Russia, shev@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 34,
October 8-9, 2001, Moscow, Russia
MS064.pdf - 78KB
V. V.
Shevchenko1, E. A.
Kozlova1, G. G. Michael1.
1.Sternberg State Astronomical Institute, 119899,
Moscow, Russia. shev@sai.msu.ru.
Brown University - Vernadsky Institute Microsymposium 34,
October 8-9, 2001, Moscow, Russia
MS065.pdf - 316KB
V.V.Shevchenko, Sternberg State Astronomical Institute, Moscow University,
Moscow 119992,
Russia, shev@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 38,
October 27-29, 2003, Moscow, Russia
ms082.pdf - 338KB
V.V.Shevchenko, Sternberg State Astronomical Institute, Moscow University,
Moscow 119992,
Russia, shev@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 38,
October 27-29, 2003, Moscow, Russia
ms083.pdf - 346KB
V.V. Shevchenko1, 2, P. Pinet2, S. Chevrel2, S.G. Pugacheva1, Y. Daydou2.
1 Sternberg State Astronomical Institute, Moscow University, 13
Universitetsky pr.,
119992 Moscow, Russia;
2 UMR 5562/CNES/Observatory Midi-Pyrenees, Toulouse
University, 14
avenue E. Belin, 31400 Toulouse, France.
shev@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 38,
October 27-29, 2003, Moscow, Russia
ms084.pdf - 315KB
V.V.Shevchenko1,2, P.C.Pinet1,
S.Chevrel1, Y.Daydou1, T.P.Skobeleva2, O.I.Kvaratskhelia3, C.Rosemberg1.
1UMR
5562
'Dynamique Terrestre et Planetaire'/CNRS/UPS, Observatoire Midi-Pyrenees,
Toulouse, 31400
France;
2Sternberg Astronomical Institute, Moscow University, Moscow, 119992,
Russia,
3Abastumany Astrophysical Observatory, Georgian Academy of Sciences, Georgia.
shev@sai.msu.ru
Brown University - Vernadsky Institute Microsymposium 38,
October 27-29, 2003, Moscow, Russia
ms085.pdf - 280KB
В.В.Шевченко, Государственный астрономический институт им.П.К.Штернберга, 2009.
Lipskiy_100.pdf - 3265 КВ
В.В.Шевченко, Государственный астрономический институт им.П.К.Штернберга, 2009.
New results.pdf - 1781 КВ
V.V.Shevchenko1,2, P.C.Pinet1, S.Chevrel1, Y.Daydou1, T.P.Skobeleva2,
O.I.Kvaratskhelia3,
C.Rosemberg1. 1UMR 5562 'Dynamique Terrestre et Planetaire'/CNRS/UPS,
Observatoire Midi-
Pyrenees, Toulouse, 31400 France; 2Sternberg Astronomical Institute, Moscow
University, Moscow,
119992, Russia, 3Abastumany Astrophysical Observatory, Georgian Academy of
Sciences, Georgia.
shev@sai.msu.ru
m44_75_shevchenko_etal.pdf - 188 KB
AND KEPLER. M.P. Sinitsin, V.V. Shevchenko, Sternberg Astronomical Institute,
Moscow University,
Moscow, 119992, Russia shev@sai.msu.ru
m44_76_sinitsin_shevchenko.pdf - 164 KB
Наша уникальная Солнечная система
Марченко М.,
Первые разведчики Луны.
Марченко М.,
Первая мягкая посадка на
Луну и первый лунный искусственный спутник.
Марченко М.,
Автоматическая
самоходная станция на Луне и доставка лунного
грунта.
Перспективы создания Лунной базы.
Видеоматериалы 5871КБ