Документ взят из кэша поисковой машины. Адрес оригинального документа : http://kvant.mccme.ru/pdf/2002/04/kv0402khannanova.pdf
Дата изменения: Fri Dec 23 19:26:56 2005
Дата индексирования: Tue Oct 2 00:37:56 2012
Кодировка: Windows-1251

Поисковые слова: п п п п п п п п п п п п п п п п п п
НА Л А Б О Р АШ И Р А Б Я ТО НИ Л

ЮДЕНИЯ

'КВАНТА'

35

ЭТА СОВРЕМЕННАЯ ДРЕВНЯЯ ОПТИКА
Т.ХАННАНОВА, Н .ХАННАНОВ

С

генераторов лазеров не прошло и полвека. Однако применение лазера оказалось столь разнообразным, что современный школьник с трудом верит, что всего 40 лет назад слова 'лазер' просто не существовало. Малая расходимость светового пучка, большая интенсивность, когерентность и поляризованность излучения лазера позволяют создавать на его основе и 'скальпель' для хирурга, и 'циркуль' для астронома, и 'носитель информации' для пользователей компьютера. В настоящее время именно свет лазера играет огромную роль в передаче и переработке информации. Общеизвестно использование лазера в линиях оптоволоконной связи, в таких устройствах, как CD ROM и лазерный принтер. С постепенным переходом на магнитооптические диски он начинает использоваться и для записи информации на жесткий диск компьютера. Выйдя из стен научных и военных лабораторий, лазер 'примостился' на поясе современного тинэйджера в виде CD-плеера или брелока для ключей. Давайте попробуем использовать лазерный брелок или лазерную указку для простых, наглядных, но от того не менее интересных исследований в домашних условиях явлений геометрической и волновой оптики явлений, открытых и изученных задолго до рождения даже самой идеи создания лазера. Единственное, о чем необходимо напомнить перед экспериментом с лазером еще раз, НЕЛЬЗЯ ДОПУСКАТЬ ПРЯМОГО ПОПАДАНИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ В ГЛАЗ! Локализация на малом участке сетчатки глаза большой энергии может привести к разрушению этих участков. И еще экономьте энергию батареек, для фиксации положения светового пятна достаточно лишь ненадолго включить его. Это, кстати, будет беречь и ваши глаза, так как отраженное лазерное излучение тоже может быть достаточно интенсивным.

МОМЕНТА ИЗОБРЕТЕНИЯ ОПТИЧЕСКИХ КВАНТОВЫХ

мей (ок. 90 ок. 160) впервые описал закон преломления света, связывающий угол падения и угол преломлеD ния (рис.1). В его распоM ряжении были две линейки + СМ и DM, прикрепленные к диску и вращающиеся вокC руг точки М. Опуская нижнюю часть диска с линейкой в воду, он добивался того, чтобы глазу казалось, что Рис. 1 нижняя и верхняя линейки образуют прямую линию С ?MD . Это означало, что нижняя линейка расположена так, что лучи, выходящие из точки С и формирующие ее мнимое изображение, преломляются на границе вода воздух, и изображение точки получается в С ? . Затем диск вынимался, и по делениям на диске измерялись соответствующие углы. Птолемею удалось довольно точно измерить эти углы и установить, что отношение углов падения и преломления остается величиной постоянной:
= n.

В учебниках обычно приводится другой закон преломления, называемый законом Снеллиуса:
sin sin = n .

Почему ошибался Птолемей, или О чем говорят пластиковые бутылки?
Как вы уже догадались, помимо лазерного брелока (указки) нам понадобится еще пластиковая бутылка, заполненная водой, а также линейка (желательно длинная, около 100 см) и угольник. Наша цель исследовать явления преломления света на границе двух сред. Древнегреческий ученый Клавдий Птоле-

Его формулировка была обнаружена в рукописях голландского астронома и математика Виллеброрда Снеллиуса (1580 1626) после его смерти. Кто же прав? Может, Птолемей не знал, что такое синус угла? Или Снеллиус сомневался в том, что он прав, и поэтому не опубликовал свой результат? Попробуем ответить на эти вопросы с помощью лазерной указки и пластиковой бутылки с газировкой. Лучше выбрать бутылку побольше и не только потому, что точность будет выше. Как же, не раскрывая бутылки, найти плоскую поверхность, на которую можно пустить 'луч падающий'? Посмотрите на осевое сечение бутылки (рис.2). Верхняя его часть похожа на сечение треугольной призмы, нижняя на сечение плоскопараллельной пластины. Ход лучей в этих классических оптических системах хорошо известен (возможно, в школе вы даже выполняли лабораторную работу с этими специально изготовленными изделиями). Если найти на цилиндрической бутылке это осевое сечение, зафиксировать точки вхождения и выхода луча и измерить угол, под которым луч падает на плоскость, задача была бы решена. Но как найти это сечение? Зафиксируйте место падения лазерного луча на стену, проведите соответствующую вертикальную линию, затем двигайте бутылку по горизонтальному столу до тех пор, пока луч, прошедший сквозь бутылку, не попадет на ту же вертикаль. Дальнейшее измерение углов падения и преломления является делом техники. Угол падения равен углу, под которым луч выходит из бутылки (что хорошо известно для плоскопараллельной пластинки). Нужно зафиксировать точки входа и выхода луча, измерить расстояния H1 и H2 от Рис. 2


36

КВАНT 2002/?4

стола до этих точек, расстояние L от бутылки до стены, куда падает луч, и высоту H3 (см. рис.2). Для расчетов понадобится и диаметр бутылки d, @ который проще всего изРис. 3 мерить с помощью угольника и линейки (рис.3). Теперь надо провести несколько измерений и заполнить таблицу: d, мм
99 + 1 H1 , мм 174 + 2 H2 , мм 215 + 2

ку только при больших углах падения. Если этих измерений недостаточно или они проведены с большой ошибкой, то следует подумать, как уменьшить эту ошибку. Как видно из графика, ошибка особенно велика при определении угла преломления в воде. Это связано с тем, что луч лазера имеет конечную ширину. При малых для определения тангенса этого угла приходится использовать разность высот H2 - H1 , которая мала (луч слабо отклоняется по вертикали внутри бутылки). Сами же значения H2 и H1 имеют конечную ошибку, связанную с шириной луча. При больших значениях разность H2 - H1 растет, но при этом выходное пятно
= arctg

мин мак

H3 , мм
508 + 5

L, мм
574 + 2

= arctg

мин мак

H3 - H2 L
o o

H2 - H1 d
o o

sin

sin

= 26, 4 = 27, 7

= 20, 3 = 24, 6

0,440,46

0,350,42

Отметим, что после смены очередного угла падения легче не целиться в предыдущее осевое сечение, а искать его заново, двигая бутылку. Получив данные при нескольких углах, постройте график зависимости угла преломления от угла падения (по Птолемею) и график зависимости синуса угла преломления от синуса угла падения (по Снеллиусу). Не забудьте отложить на этих графиках ошибки измерений. Не вдаваясь в теорию экспериментальных ошибок, будем считать, что значение угла может иметь максимальное и минимальное значения. Если, скажем, угол падения вы определяете по его тангенсу, то оцените, в каких пределах могут лежать длины катетов (цена деления прибо, ра плюс ошибка процедуры фиксирования 60 начала и конца измеряемого отрезка) соответствующего треу40 гольника. Максимальное значение тангенса угла получается деле20 нием максимальной длины противолежащего катета на минимальное значение при0 10 20 30 40 50 60 70 , лежащего катета. По Рис. 4 таблицам или на калькуляторе находится соответствующее максимальное значение угла a . Аналогично рассчитывается и минимальное значение угла . На рисунках 4 и 5 приведены типичные графики, получаемые в таких измерениях. Видно, что отклонение от закона преломления Птолемея превышает экспериментальную ошиб-

sin 0,6 0,4 0,2

0
Рис. 5

0,2

0,4

0,6

0,8 sin

кона требуется проведение измерений углов с точностью выше 1%, что с данным оборудованием невозможно. Если вы пришли к выводу, что закон Снеллиуса более соответствует экспериментальной зависимости, то из графиков на рисунках 5 и 8 логично получить коэффициенты преломления n воды (или другой жидкости, заполняющей бутылку) и оргстекла. Проведение прямых, прохо-

на высоте H2 существенно уширяется. С этим увеличением расходимости выходящего пучка света связана точность в определении H3 , а следовательно, и tg при больших углах падения. Исправить ситуацию можно, увеличив диаметр бутылки, например взяв десятилитровую бутыль (они сейчас тоже появились в продаже). Имея в руках лазер, можно добиться еще более четкого доказательРис. 6 ства отклонения от закона Птолемея = n . Например, изучив преломление на границах, образованных стеклянными торцами стекла для книжных полок, где при достаточной прозрачности торца можно умудриться одновременно увидеть и луч падающий, и луч преломленный (рис.6). На рисунках 7 и 8 приведены графики, демонстрирующие, насколько данные, полученные при преломлении луча лазера на торцевых гранях листа из оргстекла размером 35 ? 40 см, соответствуют законам Птолемея и Снеллиуса. За счет значительных расстояний, которые луч проходит внутри оргстекла, удается существенно снизить ошибку измерения угла преломления . По этим графикам можно утверждать, что начиная с = 45o наблюдается отклонение от закона Птолемея. При , меньших углах для от40 клонения от этого за20

0
Рис. 7

20

40

60

80 ,

sin 0,6 0,4 0,2 0
Рис. 8

0,2

0,4

0,6

0,8

1 sin


НАШИ

НАБЛЮДЕНИЯ

37

дящих через все точки с наибольшим и наименьшим наклоном, дает воз" можность оценить ошибку полученного значения n. У нас получи лось n = 1, 31 + 0, 02 для воды в бутылке и для n = 1, 49 + 0, 02 , " $ оргстекла. А у вас? Рис. 9 Теперь попробуем ответить на вопрос исследования: почему ошибался Птолемей? Птолемей измерил углы и в 10 точках интервала 0 90њ через каждые 10њ. Построим теоретическую зависимость от , считая известным коэффициент преломления воды n = 1,33 (рис.9). 'Позволим' Птолемею ошибаться в изме,

рении углов на 1 градус ( +1o ). При такой ошибке все точки, кроме углов = 70o и = 80o , ложатся на прямую. А теперь вспомним, как Птолемей измерял угол . Попробуйте сами опустить в воду линейку так, чтобы угол между ней и поверхностью воды составил 70 80њ (что соответствует птолемеевским углам = 10 - 20o ). 'Излом' линейки, хорошо видный при больших углах, почти неразличим при малых. Поэтому скорее всего ошибка в измерении при малых может быть увеличена до +3o . В таком случае все точки, кроме a = 80o , ложатся на прямую. Анализ дошедшей до нас оригинальной таблицы результатов Птолемея подтверждает, что точка = 80o действительно выпадает из линейной зависимости = k . Однако позволим великому естествоиспытателю самому решать, как интерпретировать зависимость, на которой девять точек из десяти ложатся на экспериментальную прямую, а одна 'выпадает' из нее.

НАШИ
'Утро туманное...'

НАБЛЮДЕНИЯ
'Вошел: и пробка в потолок...'
Несомненно, по случаю ли Нового Года или по другому приятному поводу вам доводилось наблюдать такое физическое явление: из бутылки вместе с брызгами шампанского вылетает пробка и ударяет в потолок. Но вот потолок как раз и мешает установить, на какую высоту h она могла бы подняться. Можно, конечно, экспериментировать на открытом воздухе, но все равно высоту подъема пробки пришлось бы прикидывать 'на глазок'. Поэтому проведем оценочный расчет. Сначала выполним измерения: масса пробки m = 8 г; внутренний диаметр 'ствола' бутылки равен 18 мм, значит, площадь его сечения S = 254 мм2 ; глубина погружения пробки l = 24 мм. Часто сразу после снятия проволочной уздечки пробка несколько секунд остается неподвижной. Это означает, что сила давления газов и максимальная сила трения пробки о ствол примерно равны. Так как сила трения линейно убывает по мере выхода пробки из бутылки (покажите это), работу действующей на пробку силы можно записать в виде A = pSl 2 , где р давление в бутылке. А вот силой сопротивления воздуха пренебрегаем: ее учет, хотя и не создает проблемы, все же сильно утяжелит рассказ о вылетающей пробке. В популярной энциклопедии 'Алкогольные напитки' говорится, что 'бутылка должна выдерживать в течение минуты давление 17 атмосфер'. Примем запас прочности, страхующий бутылку от разрыва, пятикратным. Отсюда находим давление внутри бутылки: p = 3, 4 105 Па . Пусть 'ствол' бутылки направлен вертикально вверх. Тогда имеем очевидное соотношение

Глядя на туманную толщу, зададим себе вопрос: какие физические факторы удерживают туман над поверхностью земли? Хотя большинство частиц тумана имеют диаметр порядка 10 мкм (есть меньше, есть и больше), плотность воды в них обычная: = 103 кг м 3 ; следовательно, архимедова сила тут ни при чем. Ветер похоже тоже ни при чем, так как его скорость может иметь вертикальную составляющую, направленную и вверх и вниз, а также нулевую. А может, туманные капельки совершают в воздухе броуновское движение и оттого не падают? Тоже нет, поскольку наибольший диаметр броуновской частицы примерно 1 мкм и, значит, удары молекул воздуха о парящие капли воды для них нечувствительны. Если подумать, что капельки очень медленно падают в воздухе, испытывая его сопротивление, то вычисления не подтвердят эту мысль. Физически несложный расчет, связанный с вязкостью воздуха (а потому выходящий за школьные рамки), дает, что десятиметровый слой тумана осел бы почти весь за 56 минут а этого не наблюдается. Предположим теперь, что микрокапельки воды наэлектризовались положительно в процессе образования тумана и находятся в равновесии в двух вертикальных противонаправленных полях: в поле тяжести с напряженностью g = = 9, 8 м с2 и в электрическом поле Земли с напряженностью Е = 130 В/м. Очевидно, что условие равновесия можно записать в виде mg = qE, где m и q масса и заряд капельки соответственно. Капля не должна быть разорвана электрическими силами. В качестве простого условия ее стабильности разумно потребовать, чтобы электрическая энергия капли не превосходила ее поверхностную энергию, т.е. q2 4R2 , 80 R где R радиус капли, = 7, 2 10 -2 H/м коэффициент поверхностного натяжения воды, 0 = 8, 85 10 -12 Ф м электрическая постоянная. Из полученных соотношений (учитывая, что m = 4R3 3 ) находим диаметр капли:

mgh :

pSl pSl , откуда h : 2mg 13 м . 2

E d = 2 R 2 3 1 8 0 25 мкм . g
Результат явно подтверждает наше предположение.

2

Заметим, что начальная скорость пробки при этом составляет v0 : 2gh 16 м с 60 км ч . Этой средней автомобильной скорости вполне достаточно, чтобы травмировать, например, глаз. Поэтому целиться из бутылки в рядом стоящего не рекомендуется. Пусть уж лучше пробка летит в потолок! Публикацию подготовил В.Дроздов