Документ взят из кэша поисковой машины. Адрес оригинального документа : http://heritage.sai.msu.ru/ucheb/kinematika/Kinematika.htm
Дата изменения: Fri May 11 04:46:53 2007
Дата индексирования: Mon Oct 1 20:31:19 2012
Кодировка: Windows-1251

Поисковые слова: vallis
К.В.Бычков, И.М.Сараева - Задачи по теме: Кинематика материальной точки
Астрономическое образование с сохранением традиций
ОБЩАЯ ФИЗИКА:

К.В.БЫЧКОВ [ГАИШ],  И.М.САРАЕВА [физфак МГУ]

КИНЕМАТИКА МАТЕРИАЛЬНОЙ ТОЧКИ: ЗАДАЧИ

Задачи по курсу общей физики для студентов астрономического отделения

Здесь можно скачать этот файл в формате Ms.Word

Введение

В основе предлагаемой работы лежит опыт семинарских занятий по курсам общей физики и астрономии для студентов астрономического отделения физического факуль-тета МГУ.

При изучении механики материальной точки, в особенности ее разделов, связанных с движением по криволинейной траектории, часто оказываются полезными астрономиче-ские приложения. В условиях поверхности Земли набор естественных траекторий прак-тически сводится к параболе. В космосе, наоборот, представлены многие типы криволи-нейного движения: вращение по окружности, а также эллиптические, параболические и гиперболические траектории разной степени вытянутости. К тому же формы орбит кос-мических объектов не ограничиваются одними коническими сечениями. Например, об-ращение звезд вокруг центра галактики во многих случаях не описываются законами Кеплера, а в процессе сжатия вращающихся газовых туманностей имеет место посте-пенное приближение к центру по спирали. Параллельно с физическим содержанием за-дачи уместно привести и первые сведения о математическом аппарате плоских кривых линий.

Другим аспектом является соотношение между прямыми и обратными задачами. Для лабораторных условий типична прямая постановка: требуется вычислить параметры траектории тела, зная действующие на него силы. В астрономии как наблюдательной науке важен и обратный подход, когда по известному движению выясняют характер взаимодействия. Часть предлагаемого материала дает студентам первое представление об обратных задачах. С методической точки зрения решение обратной задачи, как правило, проще и нагляднее. Поэтому имеет смысл показать одну и ту же задачу дважды: сначала в разделе 'кинематика' как обратную, и затем, после приобретения студентами опыта, в разделе 'динамика' выполнить решение более сложной прямой задачи. Перейдем к изложению материала, предварительно договорившись о некоторых обозначениях. Координаты точки, движущейся в плоскости, как обычно, равны x и y, время - t, а для параметров движения оставляем буквы a, b, k, w, j. Векторы представляем прямыми жирными символами: r - радиус вектор частицы, v - ее скорость, w - ускорение. Точка над символом описывает дифференцирование по времени.

I Определение траектории, скорости и ускорения точки из закона движения в декартовых координатах.

Во всех задачах этого раздела требуется определить форму траектории, найти векторы скорости и ускорения, а также восстановить динамический закон движения.

Задача 1. Точка движется в плоскости. Ее координаты x и y зависят от времени t как

(1)

(2)

где a, b, ω и φ - параметры.

Если a либо b равны нулю, то имеет место прямолинейное движение вдоль той или иной координатной оси. Оно происходит внутри отрезка длиной 2a, либо 2b, центр которого расположен в начале координат. Предположим, что оба этих параметра отличны от нуля. Разделим первое уравнение на a, второе - на b и раскроем косинус суммы:

, ( 3 )

. ( 4 )

Исключим время t из уравнений движения. Сначала рассмотрим два особых случая. При получается эллипса, ориентированный параллельно осям:

,

а значению соответствует уравнение отрезка прямой .

В случае, когда оба этих параметра отличны от нуля, с помощью ( 3 ) выразим и через x/a и подставим результат в ( 4 ). После несложных преобразований получим уравнение эллипса, ориентация которого определяется величиной φ:

Рис. 1. Наклонный эллипс.

.

Роль параметра φ ясна из Рис. 1. Теперь определим кинематические характеристики траектории и попытаемся выяснить направление действующей силы. На Рис. 1 единичные векторы i и j, направлены вдоль координатных осей. Напишем выражение для радиус-вектора точки, с координатами ( 1 ) и ( 2 ):

.