Документ взят из кэша поисковой машины. Адрес оригинального документа : http://heritage.sai.msu.ru/ucheb/Zemcov/Part_3_Hydrogen/Chapter_14/chapter_14.htm
Дата изменения: Fri May 11 04:32:10 2007
Дата индексирования: Mon Oct 1 20:48:48 2012
Кодировка: Windows-1251

Поисковые слова: m 97
Ю.К.Земцов, К.В.Бычков - Курс лекций по атомной физике. Глава 14.
Вернуться к оглавлению
Вернуться к предыдущей главе Перейти к следующей главе


ГЛАВА 14.    СПЕКТРЫ ВОДОРОДОПОДОБНЫХ СИСТЕМ

         Спектральная линия излучается или поглощается в результате перехода между двумя дискретными уровнями энергии. Формулы, выведенные в предыдущей главе, позволяют получить представление о спектрах атома водорода и водородоподобных ионов.

14.1. Спектральные серии атома водорода

Спектральной серией называется совокупность переходов с общим нижним уровнем. Например, серию Лаймана атома водорода и водородоподобных ионов составляют переходы на первый уровень: n→1, где главное квантовое число верхнего уровня, или его номер n, принимает значения 2, 3, 4, 5 и т.д., а серию Бальмера - переходы n→2 для n > 2. В табл.14.1.1 приведены названия первых нескольких серий атома водорода.

Таблица 14.1.1 Спектральные серии атома водорода

Серия

Название серии

n 1

Лаймана (Ly)

n 2

Бальмера (H)

n 3

Пашена (P)

n 4

Брекета (B)

n 5

Пфунда (Pf)

n 6

Хэмфри

n 7

Хансена-Стронга

 

Серия Лаймана атома водорода целиком попадает в область вакуумного ультрафиолета. В оптическом диапазоне находится серия Бальмера, а в ближней инфракрасной области - серия Пашена. Первые несколько переходов любой серии нумеруются буквами греческого алфавита по схеме табл.14.1.2:

 

Таблица 14.1.2 Обозначения первых линий спектральной серии

Dn

1

2

3

4

5

6

7

8

Индекс

a

b

g

d

ε

ζ

η

θ

 

В результате спонтанного перехода с верхнего уровня i на нижний j атом излучает квант, энергия Eij которого равна разности

 

.

 

При радиационном переходе с j на i поглощается квант с такой же энергией. В планетарной модели атома водорода энергия уровней вычисляется по формуле (13.5.2), причем заряд ядра равен единице:

 

.

 

Разделив эту формулу на hc, получим волновое число перехода:

 

 

Длина волны в вакууме равна обратной величине волнового числа:

 

 

По мере увеличения номера верхнего уровня i длина волны перехода монотонно уменьшается. При этом линии неограниченно сближаются. Существует нижний предел длины волны серии, соответствующий границе ионизации. Он обычно обозначается индексом 'С' рядом с символом серии. На рис.14.1.1 схематически изображены


переходы, а на рис.14.1.2 - спектральные линии лаймановской серии атома водорода.

 

 

Хорошо видно сгущение уровней и линий вблизи границы ионизации.

По формулам (1.3) и (1.4) с постоянной Ридберга (13.6.4) мы можем вычислить длины волн для любой серии атома водорода. В таблице 14.1.3 собраны сведения о первых

Таблица 14.1.3. Лаймановская серия атома водорода

n

Переход

E12, эВ

E12, Ry

Длина волны, Å

lэксп.

lтеор.

2

Lya

10.20

0.75

1215.67

1215.68

3

Lyb

12.09

0.89

1025.72

1025.73

4

Lyg

12.75

0.94

972.537

972.548

5

Lyd

13.05

0.96

949.743

949.754

¥

LyC

13.60

1.00

______

911.763

 

линиях серии Лаймана. В первом столбце приведен номер числа верхнего уровня n, во втором - обозначение перехода. В третьем и четвертом содержится энергия перехода, соответственно, в электронвольтах и в ридбергах. В пятом помещены измеренные длины волны переходов, в шестом - их теоретические значения, вычисленные по планетарной модели. Излучение с l < 2000Å сильно поглощается в земной атмосфере, поэтому длины волн серии Лаймана приведены для вакуума.

Хорошее согласие теории с экспериментом говорит о разумности положений, лежащих в основе теории Бора. Расхождение в сотых долях ангстрема обусловлено релятивистскими эффектами, о которых упоминалось в предыдущем разделе. Их мы рассмотрим ниже.

Формула (1.4) дает длину волны в вакууме λвак.. Для оптического диапазона (λ > 2000Å) в спектроскопических таблицах приводятся длины волн λатм., измеренные в условиях земной атмосферы. Переход к λвак. выполняется умножением на показатель преломления N:

 

(1.5)        λвак. = Nћλатм..

 

Для показателя преломления воздуха при нормальной влажности справедлива следующая эмпирическая формула:

 

(1.6)           N - 1 = 28.71·10-5 (1+5.67·10-3 λ2атм. )

 

Здесь атмосферная длина волны выражена в микронах. В правую часть (1.6) можно подставить также λвак.: незначительная ошибка в длине волны мало сказывается на величине N - 1.

Сведения о бальмеровской серии (j = 2) содержатся в табл.14.1.4. Экспериментальные значения длины волны перехода в пятом столбце даны для

Таблица 14.1.4 Бальмеровская серия водорода

n

Линия

Энергия перехода

Длина волны., Å

эВ

Ry

Измерена

в атмосфере

Теоретическая

для вакуума

Теоретическая

для атмосферы

3

Ha

1.89

0.14

6562.80

6564.70

6562.78

4

Hb

2.55

0.18

4861.32

4862.74

4861.27

5

Hg

2.86

0.21

4340.60

4341.73

4340.40

6

Hd

3.02

0.22

4101.73

4102.94

4101.66

¥

HC

3.40

0.25

______

3647

3646

 

нормальных атмосферных условий. Теоретические длины волн, исправленные преломления по формулам (1.5) и (1.6), приведены в последнем столбце. Спектральные линии бальмеровской серии можно схематически изображены на

 

 

рис.14.1.3. Положение линии отмечено цветной линией; сверху - длина волны в ангстремах, снизу - принятое обозначение перехода. Головная линия Ha находится в красном диапазоне спектра; обычно она оказывается самой сильной линией серии. Остальные переходы монотонно ослабевают по мере увеличения главного квантового числа верхнего номера. Линия Hb расположена в сине-зеленом участке спектра, а остальные - в синей и фиолетовой областях.

Природа бальмеровского скачка

 

Бальмеровским скачком называется депрессия излучения в спектрах звезд на длинах волн короче 3700Å. На рис.14.1.4 изображены регистрограммы спектров двух звезд. Красная граница

 

 

фотоэффекта, обусловленного ионизацией атома водорода со второго уровня, помечена красной пунктирной линией (l=3646Å), а собственно бальмеровский скачок - синей (l=3700Å). На нижнем спектре отчетливо видна депрессия вблизи синей линии. Для сравнения сверху помещен спектр звезды, не имеющий никаких особенностей в промежутке 3600 < l < 3700 Å.

Заметное расхождение красной и синей линий на рис.14.1.4 не позволяет считать фотоэффект непосредственной причиной рассматриваемого явления. Здесь важную роль играет наложение линий бальмеровской серии при больших значениях n. Вычислим разность длин волн ∆λ двух соседних переходов: i→2 и (i+1)→2. Дважды воспользуемся формулами (1.3), (1.4) при j = 2, заменив индекс i на n:

 

 

Для n ? 1 можно пренебречь единицей по сравнению с n, а также четверкой по сравнению с (n+1)2:

 

 

Мы получили количественное выражение для упомянутого выше неограниченного сближения верхних членов любой серии водорода. Последняя формула при n > 10 имеет точность не хуже 5%.

Абсорбционные линии имеют определенную ширину, зависящую от физических условий в атмосфере звезды. В качестве грубого приближения ее можно принять равной 1Å. Будем считать две линии неразличимыми, если ширина каждой из них равна расстоянию между линиями. Тогда из (1.7) получается, что слияние линий должно происходить при n≈15. Примерно такая картина наблюдается в спектрах реальных звезд. Итак, бальмеровский скачок определяется слиянием высоких членов бальмеровской серии. Подробнее этот вопрос мы обсудим в семнадцатой главе.

Бальмеровская серия дейтерия

Ядро тяжелого изотопа водорода - дейтерия - состоит из протона и нейтрона, и приблизительно вдвое тяжелее ядра атома водорода - протона. Постоянная Ридберга у дейтерия RD (13.6.5) больше, чем у водорода RH, поэтому линии дейтерия смещены в синюю сторону спектра относительно линий водорода. Длины волн бальмеровской серии водорода и дейтерия, выраженные в ангстремах, приведены в табл. 14.1.5.

Таблица 14.1.5. Длины волн бальмеровской серии водорода и дейтерия.

переход

водород

дейтерий

a

6562.78

6561.06

b

4861.27

4859.99

g

4340.40

4339.28

d

4101.66

4100.62

 

Атомный вес трития приблизительно равен трем. Его линии также подчиняются закону планетарной модели атома. Они смещены примерно на 0.6Å в синюю сторону относительно линий дейтерия.

14.2. Переходы между высоковозбужденными состояниями

Переходы между соседними уровнями атома водорода с номерами n > 60 попадают в сантиметровый и более длинноволновый диапазоны спектра, поэтому их называют 'радиолиниями'. Частоты переходов между уровнями с номерами i и j получаются из (1.3), если обе части формулы разделить на постоянную Планка h:

 

Постоянная Ридберга, выраженная в герцах, равна


.

 

Формулой, аналогичной (2.1), для состояний с n?1 можно пользоваться не только в случае водорода, но и для любого атома. Согласно материалу предыдущей главы, мы можем написать

 

 

где R(Гц) выражается через R(Гц) по формуле (13.8.1), как и R через R.

В настоящее время радиолинии стали мощным инструментом изучения межзвездного газа. Они получаются в результате рекомбинации, то есть образования атома водорода при столкновении протона и электрона с одновременным излучением избыточной энергии в виде кванта света. Отсюда следует их другое название - рекомбинационные радиолинии. Их излучают диффузные и планетарные туманности, области нейтрального водорода вокруг областей ионизованного водорода и остатки сверхновых. Излучение радиолиний от космических объектов обнаружено в диапазоне длин волн от 1 мм до 21 м.

Система обозначения радиолиний аналогична оптическим переходам водорода. Линия обозначается тремя символами. Сначала записывается имя химического элемента (в данном случае - водорода), затем номер нижнего уровня и, наконец - греческая буква, с помощью которой зашифрована разность j - i:

Обозначение    α    β    γ    δ

Разность j - i    1    2    3    4

Например, H109α обозначает переход со 110-го на 109-й уровень водорода, а H137β - переход между его 139-м и 137-м уровнями. Приведем частоты и длины волн трех переходов атома водорода, часто встречающихся в астрономической литературе:

Переход             H66α                H109α              H137β

n(МГц) 22364 5008.9 5005.03

l(см) 1.340 5.9853 5.9900

 

Линии H109α и H137β всегда видны раздельно, несмотря на то, что они очень близки в спектре. Это является следствием двух причин. Во-первых, методами радиоастрономии длины волн измеряются очень точно: с шестью, а иногда и с семью верными знаками (в оптическом диапазоне обычно получается не более пяти верных знаков). Во-вторых, сами линии в спокойных областях межзвездной среды значительно ýже, чем линии в звездных атмосферах. В разреженном межзвездном газе единственным механизмом уширения линий остается эффект Доплера, в то время как в плотных атмосферах звезд большую роль играет уширение давлением.

Постоянная Ридберга растет с увеличением атомного веса химического элемента. Поэтому линия He109α сдвинута в сторону бóльших частот, чем линия H109α. По аналогичной причине еще выше частота перехода C109α.

Сказанное иллюстрируется рис.14.2.1, на котором приведен участок спектра типичной газовой туманности (NGC 1795). По горизонтальной оси отложена частота, измеренная в мегагерцах, по вертикальной - яркостная температура в градусах Кельвина. В поле рисунка указана доплеровская скорость туманности (-42.3 км/с), которая несколько меняет длины волн линий по сравнению с их лабораторными значениями.

14.3. Изоэлектронная последовательность водорода

Согласно определению, данному в четвертом разделе седьмой главы, ионы, состоящие из ядра и одного электрона, называются водородоподобными. Другими словами, говорят, что они относятся к изоэлектронной последовательности водорода. Их структура качественно напоминает атом водорода, а положение энергетических уровней ионов, заряд ядра которых не слишком велик (Z < 10), может быть вычислено по простой формуле (13.5.2). Однако у многозарядных ионов (Z > 20) появляются количественные отличия, связанные с релятивистскими эффектами: зависимостью массы электрона от скорости и спин-орбитальным взаимодействием.

Оптические переходы иона HeII

Заряд ядра гелия равен двум, поэтому длины волн всех спектральных серий иона HeII в четыре раза меньше, чем у аналогичных переходов атома водорода: например, длина волны линии Ha равна 1640Å.

Лаймановская и бальмеровская серии HeII лежат в ультрафиолетовой части спектра; а в оптический диапазон частично попадают серии Пашена (P) и Брекета (B). Наиболее интересные переходы собраны в табл.14.3.1. Как и в случае бальмеровской серии водорода, приведены 'атмосферные' длины волн.

Таблица 14.3.1. Длины волн пашеновской и брекетовской серий иона HeII

Переход

4→3

5→3

7→4

9→4

Обозначение

Pa

Pb

Bg

Be

Длина волны, Å

4686

3202

5411

4541

 

Постоянная Ридберга для гелия равна:

.

Отметим важную особенность иона HeII. Из 13.5.2 следует, что энергия уровня Zn водородоподобного иона с зарядом ядра Z, равна энергии уровня n атома водорода. Поэтому переходы между четными уровнями 2n и 2m иона HeII и переходы nm атома водорода имеют очень близкие длины волн. Отсутствие полного совпадения обусловлено, главным образом, различием значений RH и RHe.



На рис. 14.3.1 сопоставлены схемы переходов атома водорода (слева) и иона HeII (справа). Пунктиром обозначены переходы HeII, практически совпадающие с бальмеровскими линиями водорода. Сплошными линиями отмечены переходы Bγ, Bε и Bη, для которых нет пары среди линий водорода. В верхней строке табл.14.3.2 приведены длины волн серии Брекета HeII, а в нижней - линии бальмеровской серии водорода. Линии серии Брекета называются также серией

Таблица 14.3.2. Серия Брекета иона HeII и серия Бальмера атома водорода

HeII

6560

(6 → 4)

Bb

5411

(7 → 4)

Bg

4859

(8 → 4)

Bd

4541

(9 → 4)

Bε

4339
(10→4)

Bζ

4200
(11 → 4)

Bη

4100

(12→4)

Bθ

4026

(13→4)

B13

HI

6563

(3→2)

Ha

_______

4861

(4→2)

Hb

_______

4340

(5→2)

Hg

_______

4102

(6→2)

Hd

______

 

Пикеринга, по фамилии директора Гарвардской обсерватории, впервые исследовавшего их в спектрах горячих звезд южного неба. Отметим, что серия Пикеринга была удачно объяснена именно в рамках планетарной модели атома. Тем самым, она способствовала установлению современных взглядов на природу атома.

Приведенная масса выше у более тяжелого химического элемента, поэтому уровень с номером 2m иона гелия лежит глубже уровня m атома водорода. Следовательно, линии серии Брекета HeII сдвинуты в синюю сторону относительно соответствующих переходов серии Бальмера. Относительная величина сдвига линий Dl /l определяется в данном случае отношением постоянных Ридберга:




Абсолютное значение Dl для l = 6560Å составляет примерно 3Å, в согласии с данными табл.(14.3.2).

Линии HeII, соответствующие переходам между уровнями с четными номерами перекрываются с линиями водорода, так как ширины линий значительно больше расстояния между ними. Обычно линии водорода значительно сильнее линий гелия, но есть одно исключение - это звезды типа Вольфа-Райе. Температура их атмосфер превышает 30000К, а содержание гелия по числу частиц в десять раз больше, чем водорода. Поэтому ионов гелия там много, а нейтрального водорода, наоборот, мало. В результате в спектрах звезд Вольфа-Райе все линии водорода наблюдаются только как слабые добавки к линиям HeII. Содержание водорода в звездах этого типа оценивается путем сравнения глубин линий брекетовской серии HeII с четными и нечетными номерами верхнего уровня: первые несколько больше из-за дополнительного вклада водорода.


     В спектрах нормальных звезд самыми сильными линиями поглощения всегда остаются линии водорода, если температура атмосферы выше 10000К. На рис.14.3.2

приведена регистрограмма горячей звезды спектрального класса О3. На рисунке хорошо видны линии серии Пикеринга и три бальмеровские линии.
        Другой пример взаимодействия линий водорода и HeII дает переход Pα иона HeII с длиной волны λ=4686Å. Эта линия в спектрах звезд может наблюдаться как эмиссионная, в то время как следующий член пашеновской серии - l 3202Å - представляет собой обычную абсорбционную линию. Различие в поведении линий обусловлено тем, что населенность верхнего уровня (n = 4) линии l 4686 может быть значительно увеличена путем поглощения сильной линии Lya водорода: длины волн переходов 2→1 атома водорода и 4→2 иона HeII очень близки. Этот процесс совершенно не влияет на излучение в линии l 3202Å, у которой оба уровня имеют нечетные номера (переход 5→3). Эффект взаимодействия ослабляется, если нижний уровень расположен достаточно высоко, например, l 5411 и l 4541. Последний используется в спектральной классификации звезд как критерий температуры.

Многозарядные ионы

Планетарная модель, как мы убедились, является весьма эффективным инструментом исследования атома водорода и водородоподобных ионов. Однако она остается весьма грубым приближением к реальной структуре атомов и, в особенности, многокозарядных ионов. В табл.14.3.3 сопоставлены экспериментальные и теоретические длины волн резонансного перехода Lya для нескольких водородоподобных ионов, представляющих интерес в астрономии. В первой строке таблицы приведены

Таблица 14.3.3. Длины волн резонансных переходов водородоподобных ионов

Ион

HeII

CVI

OVIII

FeXXVI

lтеор, Å

303.80

33.75

18.99

1.797

lэксп., Å

303.78

33.735

18.97

1.780

 

спектроскопические символы ионов, во второй - длины волн перехода Lya, вычисленные по формулам

 

при i =2 и j = 1, а в третьей - их экспериментальные значения. Если, согласно табл.14.1.3, у атома водорода расхождение с экспериментом наблюдается только в шестой значащей цифре, то у HeII - в пятой, у ионов CVI и OVIII - в четвертой, а у FeXXVI - уже в третьей. Эти различия обусловлены релятивистскими эффектами, о которых мы писали в начале главы.

Исходя из (13.7.7), вычислим разность энергий второго и первого уровней:

 

 

Множитель перед левой скобкой равен энергии перехода в нерелятивистском приближении, он получается из (3.1a) при j = 1 и i = 2:

 

 

Величина ΔEB соответствует теоретической длине волны из второй строки табл.(14.3.3). Теперь мы можем уточнить длину волны перехода. Для этого сопоставим относительную величину релятивистской поправки


с относительной разностью


чисел из табл.(14.1.3). Результаты расчетов собраны в табл.(14.3.4).

Таблица 14.3.4. Сопоставление релятивистской поправки с экспериментом

Ион

HeII

CVI

OVIII

FeXXVI

dl

6.6(-5)

6.0(-4)

1.05(-3)

9.5(-3)

dR

6.6(-5)

6.0(-4)

1.06(-3)

1.1(-2)

 

Сравнение второй и третьей строк таблицы показывает, что можно получить хорошее согласие теории с экспериментом, даже оставаясь в рамках полуклассической модели круговых орбит.

Заметное расхождение между dR и dl присутствует у иона железа. Несмотря на небольшую величину, оно неустранимо в рамках применяемой модели: расчеты по формуле (13.7.5) не приводят к улучшению результата. Причина заключается в принципиальном недостатке планетарной модели с круговыми орбитами электронов: она связывает энергию уровня только с одним квантовым числом. В действительности верхний уровень резонансного перехода расщеплен на два подуровня. Такое расщепление называется тонкой структурой уровня. Именно оно вносит неопределенность в длину волны перехода. Тонкая структура есть у всех водородоподобных ионов, причем величина расщепления быстро растет по мере увеличения заряда ядра. Для объяснения тонкой структуры нам придется отказаться от простой модели круговых орбит. Оставаясь в рамках полуклассических представлений, перейдем к модели эллиптических орбит, которую называют моделью Бора-Зоммерфельда.


Вернуться к оглавлению
Вернуться к предыдущей главе Перейти к следующей главе