Документ взят из кэша поисковой машины. Адрес оригинального документа : http://hea-www.harvard.edu/AstroStat/slog/groundtruth.info/AstroStat/slog/2009/arxiv-component-separation-methods/feed/index.html
Дата изменения: Unknown
Дата индексирования: Mon Feb 4 06:45:19 2013
Кодировка:

Поисковые слова: mercury surface
Comments on: [ArXiv] component separation methods http://hea-www.harvard.edu/AstroStat/slog/2009/arxiv-component-separation-methods/ Weaving together Astronomy+Statistics+Computer Science+Engineering+Intrumentation, far beyond the growing borders Fri, 01 Jun 2012 18:47:52 +0000 hourly 1 http://wordpress.org/?v=3.4 By: hlee http://hea-www.harvard.edu/AstroStat/slog/2009/arxiv-component-separation-methods/comment-page-1/#comment-909 hlee Mon, 05 Oct 2009 18:05:12 +0000 http://hea-www.harvard.edu/AstroStat/slog/?p=3502#comment-909 Thanks for your comment. Author's comments excite me always although I sometimes cannot understand how physical interpretations are deduced and how the external data sets are combined scientifically (or legitimately) from data reduction and analysis process. When I came across your paper, the description of various methodology in the appendix was more valuable to me, which often lacks in other publications. Knowing that astronomy is not statistic, nor computer science, it was something rarely come by. Furthermore, it could motivate people to try various strategies to their data set of statistically similar characteristics. Thanks for your comment. Author’s comments excite me always although I sometimes cannot understand how physical interpretations are deduced and how the external data sets are combined scientifically (or legitimately) from data reduction and analysis process. When I came across your paper, the description of various methodology in the appendix was more valuable to me, which often lacks in other publications. Knowing that astronomy is not statistic, nor computer science, it was something rarely come by. Furthermore, it could motivate people to try various strategies to their data set of statistically similar characteristics.

]]>
By: Sam Leach http://hea-www.harvard.edu/AstroStat/slog/2009/arxiv-component-separation-methods/comment-page-1/#comment-908 Sam Leach Thu, 01 Oct 2009 08:44:52 +0000 http://hea-www.harvard.edu/AstroStat/slog/?p=3502#comment-908 The main questions that this work did not address are how to deal with pixel-pixel correlated errors in the map, and how to deal with unresolved sources of emission that lead to a type of noise that is correlated between different channels. Naturally there are proposals in the literature based on past experience with the WMAP data. The fact that we are dealing with continuum emission means that there are often no strong features in the spectra to help with physics identification. Instead the data must be combined with 'external' datasets where complementary physics reigns. Then the interpretation proceeds with the use of, for instance, three dimensions models of the Galactic emission. The point I am trying to make is that component separation, to the extent that it is at all possible, it is just a starting point doing astrophysics. The main questions that this work did not address are how to deal with pixel-pixel correlated errors in the map, and how to deal with unresolved sources of emission that lead to a type of noise that is correlated between different channels. Naturally there are proposals in the literature based on past experience with the WMAP data.

The fact that we are dealing with continuum emission means that there are often no strong features in the spectra to help with physics identification. Instead the data must be combined with ‘external’ datasets where complementary physics reigns. Then the interpretation proceeds with the use of, for instance, three dimensions models of the Galactic emission. The point I am trying to make is that component separation, to the extent that it is at all possible, it is just a starting point doing astrophysics.

]]>