Документ взят из кэша поисковой машины. Адрес оригинального документа : http://hbar.phys.msu.ru/gorm/fomenko/wally-r.htm
Дата изменения: Unknown
Дата индексирования: Mon Oct 1 20:53:15 2012
Кодировка: Windows-1251

Поисковые слова: п п п п п п п п п п п п п
О "радиоуглероде глазами Фоменко" и "научных" основах Новой Хронологии

О «радиоуглероде глазами Фоменко» и «научных» основах Новой Хронологии: полемические заметки

В. Левченко

Я давно собирался написать разбор Фоменковского (и его соратников, например Постникова) описания и отрицания физических методов датирования, и в частности радиоуглеродного датирования. Однако каждый раз руки просто опускались. Дело в том, что ошибок, натяжек, подтасовок и прочего в их писаниях настолько много, что если бы разбирать каждый эпизод, то можно бы писать книги.

Кроме того, росло понимание, что для аккуратного и информативного разбора, который бы был ясен и убедителен для читателей, необходимо вначале изложить корректно и аргументировано основы радиоуглеродного датирования, теоретический и экспериментальный фундамент, достижения метода в его современной ипостаси.

То есть работа оказывалась намного значительнее, чем простое указание на ошибки в статьях и книгах Фоменко и его соавторов. Теперь, по завершении доступного и довольно подробного изложения основ и важнейших деталей радиоуглеродного метода, которое я настоятельно рекомендую прочитать, прежде чем двигаться дальше, можно и перейти к разбору произведений Постникова и Фоменко.

Еще несколько слов в начале. Существует в науке такое понятие — репутация ученого. Т.е. человек, уличенный в обмане в своих научных работах — конченный. На нем просто ставится крест. Доверия его работам больше не будет никогда. Да и на работу его никто не возьмет, буде он ее потеряет. Это к тому, чтобы вы знали, что заведомого обмана в этой статье искать не надо, у меня тоже есть репутация.

Ошибаться можно, конечно. Но то, что я собираюсь вам излагать, является на настоящий момент более или менее общепризнанным среди специалистов по данной теме, к которым принадлежу и я (об этом несколько слов в конце, в замечаниях об авторе и от автора).

Итак, что же пишет уважаемый М.М.Постников в свой работе «История человеческой культуры в естественно-научном освещении. КРИТИЧЕСКОЕ ИССЛЕДОВАНИЕ ХРОНОЛОГИИ ДРЕВНЕГО МИРА. Том первый — Античность», изданной, между прочим в 2000 году (так надо понимать, что при рассмотрении естественно-научных методов мы увидим новейшие данные и достижения, по крайней мере это всегда неявно предполагается читателем, разве не так?).

Давайте заглянем вначале в список используемой литературы и посмотрим из какого материала автор черпал свои познания о радиоуглероде и какие достижения он критикует. Вот все ссылки по теме радиоуглерода:

  1. Клейн Л. С. Археология спорит с физикой// Природа, 1966, № 2, стр. 51–62.
  2. То же (окончание) // Природа, 1966, № 3, стр. 94–107.
  3. Археология и естественные науки. — М.: Наука, 1965.
  4. Проблемы абсолютного датирования в археологии. —М.: Наука, 1972.
  5. Эйткин М. Дж. Физика и археология. — М.: ИЛ, 1963.
  6. Либби У. Ф. Радиоуглерод — атомные часы // «Наука и человечество», — М.: Знание, 1962, стр. 190–200.
  7. Либби У. Ф. Углерод 14, ядерный хронометр археологии // Курьер ЮНЕСКО, июль-авг.,1968, стр. 22–25 и 28–30.
  8. Фирсов Л. В. Этюды радиоуглеродной хронологии Херсонеса Таврического.-Новосибирск.: Наука, 1976.

Не густо. Даже на первый взгляд. А на второй видно, что лишь две ссылки можно более или менее отнести к научным публикациям (и то лишь отчасти по теме), а остальные — популяризаторские работы разной степени серьезности.

Посмотрим еще раз — самая «новая» ссылка на 1976 год. Странно это. Оно может конечно автору было и невдомек, что в естественных науках, особенно в наши дни 25 лет это огромный срок, а для радиоуглеродных исследований, начавшихся лишь 50 лет назад и вообще пол жизни. А с другой стороны возникают мысли о лукавстве. Ведь возьми он ссылки поновее, может там и критиковать нечего будет. Ведь как возможно читатель помнит после знакомства с основами радиоуглеродного метода в статье, 80-е годы прошлого столетия были ознаменованы существенными достижениями, улучшением точности, надежности, появлением калибровочных кривых и разрешением многих трудностей. А так, может читатели и не проверят, да и кто знает эти вещи кроме специалистов? Ну да ладно. Давайте посмотрим, что же нам повествуют о радиоуглероде. Итак.

311

§ 3. Радиоуглеродный метод датировки. Идея Либби

«Вскоре после окончания второй мировой войны американец Уилард Фрэнк Либби опубликовал открытие, стяжавшее ему мировую славу и ныне увенчанное Гуггенгеймовской и Нобелевской премиями. Изучая взаимодействие искусственно получаемых нейтронов с атомами азота, Либби пришел к выводу (1946 г.), что и в природе должны происходить такие же ядерные реакции, как в его опытах; нейтроны, выделяющиеся под воздействием космических лучей в атмосфере Земли, должны поглощаться атомами азота, образуя радиоактивный изотоп углерода — С14. Этот радиоактивный углерод примешивается в небольшом количестве к стабильным изотопам углерода С12и С13и вместе с ними образует молекулы углекислого газа, которые усваиваются организмами растений, а через них и животных, в том числе человека. Они должны быть как в тканях, так и в выделениях живых организмов.

Когда удалось (1947 г.) уловить слабую радиоактивность зловонных испарений метана у сточных вод Балтиморы, это явилось первым подтверждением догадки Либби. Затем была установлена радиоактивность растущих деревьев, морских раковин и пр. (1948–1949 гг.).

Как и всякий радиоактивный элемент, радиоактивный изотоп углерода распадается с постоянной, характерной для него скоростью. Поэтому его концентрация в атмосфере и биосфере непрерывно убывала бы (по Либби, вдвое за каждые 5568 лет), если бы убыль не пополнялась столь же непрерывно новообразованием С14в атмосфере. Сколько убывает, столько и прибывает (откуда это известно? — Авт.)

Похоже, что уважаемый критик забыл простую школьную задачу о бассейне с двумя трубами! Очевидно же, что если в среднем это было не так, то либо радиоуглерода вообще бы не было видно, либо все было бы им забито, за миллионы и миллиарды лет существования Земли-то. Да и потом, в среднем опять же, ведь это самобалансирующаяся система — образование увеличилось — концентрация возросла — распад увеличился (больше атомов) — новый баланс наступил.

Но в эту удивительную взаимоуравновешенность и соразмерность природы врезается аккорд дисгармонии. Его вносит смерть. После смерти организма новый углерод в него уже не поступает (из воздуха в тело растения, с питанием в тело животного) и уменьшение концентрации С14не восполняется радиоактивность мертвого органического тела (трупа, древесины, угля и т. п.) неудержимо падает — и что самое важное — со строго определенной скоростью! Значит, достаточно измерить, насколько уменьшилась удельная радиоактивность умершего организма по сравнению с живыми, чтобы определить, как давно этот организм перестал обновлять свои клетки — как давно срублено дерево, подстрелена птица, умер человек. Конечно, это нелегко: радиоактивность природного углерода очень слаба (даже до смерти организма — один атом С14 на 10 млрд. атомов

312

нормального углерода). Однако Либби разработал средства и приемы измерения и пересчета — так появился радиоуглеродный метод определения возраста древних объектов» ([61], стр. 52–53). Обсудим же подробнее физические основы радиоуглеродного метода датировки.

Что ж, в этом куске все более или менее верно, за исключением мелочей — не будем придираться. Пойдем дальше.

Физические основы радиоуглеродного метода

Атмосферу Земли пронизывают нейтроны, плотность потока которых меняется с высотой и геомагнитной широтой. Так, например, максимальное количество нейтронов находится на высоте примерно 12 км, а вблизи поверхности Земли плотность потока нейтронов уменьшается до нуля. На широте Парижа плотность этого потока (на равной высоте) в три раза больше его потока на широте Алжира (см. [65], стр. 138–139).

Отсюда можно сделать три вывода:

  1. нейтроны возникают в стратосфере под действием космических лучей, т. е. представляют собой вторичные частицы космического излучения;
  2. первичные космические лучи, порождающие нейтроны, являются потоком заряженных частиц;
  3. возникшие нейтроны почти немедленно поглощаются газами воздуха, так что до поверхности Земли доходит их ничтожное количество.

Число нейтронов в минуту, возникающих в земной атмосфере, равно (см. [65] с. 139) приблизительно 6×1020 нейтронов/мин с ошибкой ±25%.

Таким образом, каждую минуту на Земле возникает от 4,5×1020 до 7,5×1020 нейтронов.

Эти нейтроны сталкиваются с атомами атмосферного азота и кислорода, вступая с ними в ядерную реакцию. «Сравнительно небольшое число нейтронов достигает поверхности Земли, и резонно предположить, что каждый нейтрон, рождаемый космическими лучами, создает атом радиоуглерода, следовательно, скорость образования нейтронов равна скорости образования радиоуглерода. Это составляет примерно 7,5 кг радиоуглерода в год» ([65], стр. 104).

Период полураспада радиоуглерода С14равен примерно 5600 лет, так что 1% радиоуглерода распадается примерно за 80 лет.

Отсюда легко определить, что равновесное количество С14на Земле составляет примерно 60 тонн (с ошибкой ±25%, т. е. от 45 до 75 тонн). Это означает, что в современном образце один атом радиоуглерода приходится на 0,8×1012 атомов обыкновенного углерода,

313

откуда следует (см. [65], стр. 143), что в одном грамме природного углерода происходит в среднем 15 распадов в минуту.

Образовавшийся радиоуглерод перемешивается в атмосфере, поглощается океанами и усваивается организмами. Сфера распространения углерода называется обменным углеродным резервуа-ром. Он состоит (см. [63], стр. 30) из атмосферы, биосферы, поверхностных и глубинных океанических вод. Если принять содержание углерода в биосфере за 1, то атмосфера будет содержать 2 единицы, почва и поверхностные воды океана — по 3 единицы, а глубинные воды океана — 120 единиц. Таким образом, подавляющая масса углерода похоронена в глубине океана.

«Под радиоуглеродным возрастом подразумевается время, прошедшее с момента выхода объекта из обменного фонда до момента измерения C14 в образце» ([63], стр. 32).

Здесь тоже все более или менее верно, придираться не будем. Хотя и отметим, что для последнего года 20-го века цифры известны куда как точнее. И распределение нейтронов по широтам, высотам и пр. промерено с высокой точностью, сеть станций нейтронных мониторов по всей Земле ведет постоянный мониторинг этого потока вот уже 50 лет (например здесь), все отлично просчитано на моделях. И на уровне моря поток нейтронов конечно не равен нулю, как бы кому не хотелось (см. экспериментальные данные). Ну да это впрочем не важно. Идем дальше.

Гипотезы, лежащие в основе радиоуглеродного метода

Идея измерения радиоуглеродного возраста очень проста. Для этого достаточно знать:

  1. содержание радиоуглерода в объекте в момент выхода объекта из обменного фонда;
  2. точный период полураспада радиоуглерода C14.

После этого, взяв достаточный объем образца, следует измерить количество радиоуглерода в настоящий момент и простым вычитанием и делением вычислить время, которое прошло с момента выхода объекта из обменного резервуара до момента измерения.

Довольно точно, вспомните, что написано в статье.

Однако на практике эта простая идея встречается со значительными трудностями.

А кто обещал легкой жизни? Трудности были, но не непреодолимые. И 25 с лишком лет с момента последней, известной Постникову публикации, как мы знаем, были потрачены не зря.

Во-первых, что значит «момент выхода объекта из обменного резервуара»? Первоначальная гипотеза Либби состояла в том, что этот момент совпадает с моментом смерти объекта. Не говоря уже о том, что момент смерти может отличаться от момента, интересующего историков (например, кусок дерева из гробницы фараона может быть срублен значительно раньше времени постройки гробницы),

Кто бы с этим спорил? Но не на тысячу же лет раньше?

ясно, что отождествление момента выхода объекта из обменного резервуара с моментом смерти верно только в «первом приближении», так как после смерти обмен углерода не прекращается, он лишь замедляется, приобретая другую форму, и это обстоятельство необходимо учитывать.

Читателю, внимательно ознакомившемуся со статьей уже должно быть ясно, что данное обстоятельство учитывается — отбором образцов, выделением нужных фракций, очистками и т. д.

Известно (см. [63], стр. 31) по крайней мере три процесса, протекающие после смерти и приводящие к изменению содержания радиоуглерода в образце:

Я бы сказал «могущие в принципе» приводить. Ведь что эти процессы действительно приводят, автор-критик как раз и не показывает. Кроме того, надо помнить, что собственно количество не так важно, важно изотопное отношение.

314
  1. гниение органического образца;
  2. изотопный обмен с посторонним углеродом;
  3. абсорбция углерода из окружающей среды.

Эйткин пишет: «…единственно возможный тип разложения — это образование окиси или двуокиси углерода. Но этот процесс не имеет значения, так как он связан только с уходом углерода» ([65], стр. 149).

И правильно пишет, между прочим.

По-видимому, здесь Эйткин имеет в виду, что, поскольку окисление изотопов углерода происходит с одинаковой скоростью, оно не нарушает процентного содержания радиоуглерода.

А вот здесь пишет уже Постников, а не Эйткин, и пишет неправильно.

Вовсе не об окислении здесь речь. А о том, что а) углерод только уходит, и б) при таком уходе изотопное отношение не нарушается, так как уходят не индивидуальные атомы, а крупные органические молекулы.

Однако в другом месте он [Эйткин] пишет: «Хотя C14 в химическом отношении идентичен C12, его больший атомный вес непременно проявляется в результате процессов, имеющих место в природе, механизм обмена между атмосферным углекислым газом и карбонатом океана обусловливает несколько большую (на 1,2%) концентрацию C14 в карбонатах; наоборот, фотосинтез атмосферной углекислоты в растительном мире Земли приводит к несколько меньшей (в среднем на 3,7%) концентрации C14 в последнем» ([65], стр. 159).

Все верно.

Ссылаясь на Крега, Эйткин (см. [65], стр. 143) сообщает, что меньше всего радиоуглерода в биосфере и гумусе и больше всего (на 4,9%) в неорганических веществах в морской воде.

Больше-меньше, здесь имеется в виду изотопное фракционирование. Действительно, в растениях и воде оно направлено в разные стороны.

Нам неизвестно, каково различие в скорости окисления изотопов углерода при процессах гниения, но данные Крега заставляют полагать, что это различие

Неизвестно, а зачем же писать тогда не разобравшись-то?

должно быть вполне заметно, во всяком случае, процесс окисления углерода является обратным процессом к процессу его фотосинтеза из атмосферного газа, и потому изотоп C14 должен окисляться быстрее (с большей вероятностью), чем изотоп C12. Следовательно, в гниющих (или гнивших) образцах концентрация радиоуглерода C14 должна уменьшиться (т. е. они должны «постареть»).

А вот как раз и наоборот, если следовать его же логике. Легкие изотопы более подвижны и легче покидают объект, проще, быстрее вступают в реакцию. Так что, следуя логике Постникова, при распаде образец должен молодеть.

Но на самом-то деле, как читатель помнит, все вообще не так. Дело в том, что распад — это не просто окисление. Распад заключается во-первых, в низведении сложных соединений, ну например целлюлозы, до простых компонентов — глюкозы. Делают это специальные бактерии, которые затем и используют сахар — глюкозу — для своих нужд. И вот уже внутри клетки происходит окисление глюкозы до углекислого газа и воды. В природе сложные соединения так просто на дороге не валяются, им всегда кто-нибудь найдет применение. Это же ведь большой труд — синтезировать глюкозу, охотников ее использовать много.

Ну а когда сложное соединение разложено до простых компонентов, то его уж никто и не датирует. Может там далее и будет фракционирование (не будем в это здесь вдаваться), но какое до этого уже датировщику дело?

Другие возможности обмена углерода между образцами и обменным резервуаром, по-видимому, вообще трудно количественно учесть.

Абсолютно неясно, о каких еще «других» возможностях говорит здесь автор. Ни одного примера, даже упоминания, намека, не приводится. Это заставляет предполагать, что и самому критику такие «другие» возможности неизвестны.

Считается, что «наиболее инертны обугленное органическое вещество и древесина.

И правильно считается.

У известковой части костей и карбонатов раковин, наоборот, часто наблюдается изменение изотопного состава» ([63] с. 31).

И это тоже верно, на этом я, если помните, останавливался в http://hbar.phys.msu.ru/gorm/dating/wally-1.htm

Поскольку учет возможного обмена углерода, таким образом, практически нереален, при измерениях его фактически игнорируют.

Лукавит Постников, видите? Как читатель теперь знает, не игнорируют этот процесс, а просто-напросто удаляют фракции, подверженные такому обмену. Выделяют то, что не обменивается. Ведь той же целлюлозе для того, чтобы обменяться углеродом, надо перестать быть целлюлозой. Поэтому и устойчивы эти фракции. То, что в ней осталось к моменту исследования наверняка несет начальный изотопный сигнал, а все остальное, что может загрязниться, просто удаляется.

Стандартные методики радиоуглеродных измерений обсуждают в лучшем случае лишь способы очистки образца от постороннего радиоуглерода и причины возможного загрязнения образца. Например, советский специалист С. В. Бутомо ограничивается утверждением, что «обугленное органическое вещество и хорошо сохранившаяся

315

древесина в большинстве случаев достаточно надежны» ([63], стр. 31) а Эйткин к этому добавляет, что «При работе с любым образцом надо тщательно очистить его от чужеродных корешков и волокон, а также обработать кислотой, чтобы растворить всякие осадочные карбонаты. Для удаления гумуса можно промыть образец в щелочном растворе» ([65], стр. 149).

Мне кажется, что критик просто не понял. Именно этим очистка и занимается — удаляет фракции, подверженные обмену вместе с чужеродным углеродом.

Обратим внимание, что вопрос, не меняет ли эта «химическая очистка» содержания радиоуглерода, даже не ставится.

Еще как ставится. И экспериментально это проверяют, обрабатывая стандартные образцы с точно известным содержанием. Однако, для многих образцов читатель может понять абсурдность этой претензии и сам — если сложное соединение выделяется, очищается, то само его наличие в виде устойчивого сложного соединения хорошая гарантия против обмена в процессе хим. очистки. Да и конечно при очистке не используют по мере возможности углеродсодержащие химикаты.

Изменение содержания радиоуглерода в обменном фонде

Вторая гипотеза Либби состоит в том, что содержание радиоуглерода в обменном резервуаре не меняется со временем. Эта гипотеза, конечно, также неверна, и эффекты, влияющие на изменение с течением времени содержания радиоуглерода в обменном фонде, необходимо учитывать.

Абсолютно с этим согласен. И как читатель знает, это все прекрасно учитывается использованием калибровочной кривой (см. http://hbar.phys.msu.ru/gorm/dating/wally-1.htm) Точно и надежно. Так что весь огонь критики в этом параграфе направлен совершенно мимо цели, все эти вопросы уже разрешены аж 20 лет назад. Вот что значит не следить за научной литературой и строить свои теории на данных четвертьвековой давности.

Я не буду построчно комментировать этот параграф, сделаю лишь несколько замечаний в конце. Все равно читателю ясно, что все в нем написанное сейчас уже значения не имеет, устарело.

Если в момент смерти объекта содержание радиоуглерода в обменном резервуаре отличалось от современного на 1%, то при расчете возраста такого образца возникнет ошибка примерно на 80 лет; 2% дадут ошибку на 160 лет и т. д. Отклонение в 10% даст ошибку в возрасте на 800 лет, а при еще больших отклонениях линейный закон нарушится и отклонение, скажем, в 20% приведет к ошибке в определении возраста не на 1600 лет, а на 1760 лет.

Эйткин указывает следующие эффекты, влияющие на содержание радиоуглерода в обменном резервуаре:

  1. изменение скорости образования радиоуглерода (в зависимости от изменения интенсивности космического излучения);
  2. изменение размеров обменного резервуара;
  3. конечная скорость перемешивания между различными частями обменного резервуара;с) разделение изотопов в обменном резервуаре.

Он замечает, что «определенные данные, касающиеся пунктов „а” и „б”, трудно получить иным способом, кроме измерений на образцах, достоверно датированных другими методами» ([65], стр. 153).

Существуют, кстати сказать, еще два современных эффекта, изменяющих нынешнюю концентрацию радиоуглерода. Это увеличение содержания радиоуглерода вследствие экспериментальных взрывов термоядерных бомб и уменьшение этого содержания (т. н. «эффект Зюсса») за счет сжигания ископаемого топлива (нефть и уголь, содержание радиоуглерода в которых вследствие их древности должно быть ничтожным).

316

Изменение скорости образования радиоуглерода (пункт «а») пытались оценить многие авторы. Так, например, Крауэ исследовал «исторически надежно датируемые материалы» и показал, что существует корреляция между ошибкой радиоуглеродного датирования и изменением магнитного поля Земли. По его вычислениям, удельная активность менялась вокруг средней величины с 600 г. н.э. по настоящее время в пределах ±2%, причем максимальные изменения происходили каждые 100–200 лет (см. [63], стр. 29).

«По-видимому, изменения космического излучения происходили и раньше, но ввиду кратковременности значение этих флуктуаций трудно учитывать. На основании совпадения вычисленного значения удельной активности углерода, а также на основании сходимости возраста морских осадков, определенного по не зависимым друг от друга углеродному и иониевому методам, можно считать, что интенсивность космического излучения за последние 35 000 лет была постоянной в пределах ±10–20%» ([63], стр. 29).

Напомним, что «постоянство» на 20% означает ошибку в определении возраста на 1760 лет!

Изменение обменного резервуара (пункт «б») определяется в основном колебаниями уровня океана. Либби (см. [65], стр. 157) показал, что снижение уровня моря на 100 м уменьшает размеры резервуара на 5%. А если при этом за счет понижения температуры (скажем, из-за оледенения) уменьшилась концентрация растворенного карбоната, то общее уменьшение углерода в обменном фонде могло доходить до 10%.

В отношении скорости перемешивания (пункт «г») имеющиеся данные несколько противоречивы. Например, Фергюссон (см. [65], стр. 158) на основании исследования радиоактивности годичных колец деревьев полагает, что перемешивание идет довольно быстро и среднее время, в течение которого молекула углекислого газа находится в атмосфере до перехода в другую часть резервуара, составляет не более 7 лет.

С другой стороны, во время испытаний водородных бомб образовалось около полутонны радиоуглерода, что мало влияет на общую массу радиоуглерода (в 60 тонн). Тем не менее в 1959 г. активность образцов увеличилась на 26%, а к 1963 г. увеличение достигло даже 30%. Это четко свидетельствует в пользу слабой перемешиваемости. Полное перемешивание воды в Тихом океане происходит (по оценке Зюсса) примерно за 1500 лет, а в Атлантическом океане (по оценкам Олсона и Брекера) — за 750 лет (см. [66], стр. 198).

317

На перемешивание воды в океане сильно влияет температура. Увеличение скорости перемешивания поверхностных и глубинных вод на 50% приведет к снижению концентрации радиоуглерода в атмосфере на 2%.

Несколько замечаний по скорости перемешивания. Действительно, время жизни углеродного атома в атмосфере около 7 лет. Насколько хорошо перемешан углекислый газ интересующиеся могут посмотреть в этих данных http://cdiac.esd.ornl.gov/trends/co2/contents.htm Люди с огромным трудом вылавливают десятые доли промиле различий в изотопном составе для понимания геофизических процессов обмена углерода.

Что же до замечаний Постникова о бомб-сигнале (рис. 4 в wally-1.htm ), то явно у критика какие-то затруднения и ошибки. Демонстрируем. Сам же он писал как радиоуглерод распределен по резервуарам, сам же писал, что на две единицы в атмосфере приходится 120 в океане. А теперь сравнивает то, что было инжектировано в атмосферу со всем радиоуглеродом. Оцените сами, Постников пишет, что за счет ядерных испытаний было инжектировано (в атмосферу, отметим мы) пол тонны радиоуглерода. Всего радиоуглерода примерно 60 тонн, как он сам оценивает. Причем, как он сам писал выше, в атмосфере примерно 2/120 = 1/60 его часть, т. е. около тонны (реально, по современным определениям несколько меньше чем 1/60).

Теперь если в атмосферу очень быстро, за 2–3 года впрыснуть еще пол тонны, что произойдет с концентрацией? Очевидно увеличится в полтора раза. Что она кстати и сделала, именно что в среднем по всей атмосфере увеличилась на 75–80% (см. иллюстрации, рис. 4 в wally-1.htm), что находится в хорошем согласии с разбросом оценок Постниковым полного количества радиоуглерода (см. выше). И тут же начала быстро спадать в другие резервуары. Абсолютно очевидно, что Постников просто перепутал, а может не понял чем они различаются, время перемешивания-гомогенизации атмосферы как индивидуального резервуара, которое действительно мало, с временем обмена с другими резервуарами, и с временем перемешивания всей углеродообменной системы, которое суть тысячи лет.

Вариация содержания радиоуглерода в живых организмах

Третья гипотеза Либби состоит в том, что содержание радиоуглерода в организме одно и то же для всех организмов по всей Земле (т. е. не зависит, скажем, от широты и породы растения). С целью проверить эту гипотезу Андерсен (Чикагский университет), проведя тщательные измерения, получил (см. [66], стр. 191), что на самом деле содержание радиоуглерода, как и следовало ожидать, колеблется от 14,53±0,60 до 10,31±0,43 распадов на грамм в минуту. Это дает отклонение содержания радиоуглерода от среднего значения на ±8,5%.

Еще бы этого не следовало ожидать! В описании радиоуглеродного метода обсуждены причины, приводящие к отклонениям в содержании радиоуглерода в орг