Документ взят из кэша поисковой машины. Адрес оригинального документа : http://galspace.spb.ru/index86.html
Дата изменения: Unknown
Дата индексирования: Sat Apr 9 22:53:21 2016
Кодировка: Windows-1251

Поисковые слова: п п п п п п п п п п п п п п п
Скорость света, сверхсветовая скорость света
 Солнечная система




 
Солнечная система - общие вопросы
Солнечная система
Энергия Космоса
  "Общие вопросы"
Главная
"Горизонт Вселенной"
"Горизонт Событий"
Вселенная - додекаэдр
Скорость "сверхсвет"
Страница: Скорость света (1-я часть), Скорость сверхсвет (2-я часть);
Теория относительности Эйнштейна

Сверхсветовая скорость

    Всем известно, что предельно возможной скоростью движения материальных объектов или распространения любых сигналов является скорость света в вакууме. Группа американских исследователей обнаружила, что очень короткий лазерный импульс движется в особым образом подобранной среде в сотни раз быстрее, чем в вакууме. Это явление казалось совершенно невероятным (скорость света в среде всегда меньше, чем в вакууме) и даже породило сомнения в справедливости специальной теории относительности. Между тем сверхсветовой физический объект - лазерный импульс в усиливающей среде - был впервые обнаружен не в 2000 году, а на 35 лет раньше, в 1965 году, и возможность сверхсветового движения широко обсуждалась до начала 70-х годов.

    Наверное, всем - даже людям, далеким от физики, - известно, что предельно возможной скоростью движения материальных объектов или распространения любых сигналов является скорость света в вакууме. Она обозначается буквой с и составляет почти 300 тысяч километров в секунду; точная величина с = 299 792 458 м/с. Скорость света в вакууме - одна из фундаментальных физических констант. Невозможность достижения скоростей, превышающих с, вытекает из специальной теории относительности (СТО) Эйнштейна. Если бы удалось доказать, что возможна передача сигналов со сверхсветовой скоростью, теория относительности пала бы. Пока что этого не случилось, несмотря на многочисленные попытки опровергнуть запрет на существование скоростей, больших с. Однако в экспериментальных исследованиях последнего времени обнаружились некоторые весьма интересные явления, свидетельствующие о том, что при специально созданных условиях можно наблюдать сверхсветовые скорости и при этом принципы теории относительности не нарушаются.
    Для начала напомним основные аспекты, относящиеся к проблеме скорости света. Прежде всего: почему нельзя (при обычных условиях) превысить световой предел? Потому, что тогда нарушается фундаментальный закон нашего мира - закон причинности, в соответствии с которым следствие не может опережать причину. Никто никогда не наблюдал, чтобы, например, сначала замертво упал медведь, а потом выстрелил охотник. При скоростях же, превышающих с, последовательность событий становится обратной, лента времени отматывается назад. В этом легко убедиться из следующего простого рассуждения.
    Предположим, что мы находимся на неком космическом чудо-корабле, движущемся быстрее света. Тогда мы постепенно догоняли бы свет, испущенный источником во все более и более ранние моменты времени. Сначала мы догнали бы фотоны, испущенные, скажем, вчера, затем - испущенные позавчера, потом - неделю, месяц, год назад и так далее. Если бы
Высокоэнергетическая струя Вещества
Специальная теория относительности Эйнштейна говорит, что ничто не может двигаться со скоростью, превышающей скорость света. Однако струи протонов и электронов, которые выбрасывают объекты типа квазаров и черных дыр движутся со скоростью, почти что равной скорости света. Такие струи объясняют структуру Лебедь A.
Струя, движение почти со скоростью света
источником света было зеркало, отражающее жизнь, то мы сначала увидели бы события вчерашнего дня, затем позавчерашнего и так далее. Мы могли бы увидеть, скажем, старика, который постепенно превращается в человека средних лет, затем в молодого, в юношу, в ребенка... То есть время повернуло бы вспять, мы двигались бы из настоящего в прошлое. Причины и следствия при этом поменялись бы местами.
    Хотя в этом рассуждении полностью игнорируются технические детали процесса наблюдения за светом, с принципиальной точки зрения оно наглядно демонстрирует, что движение со сверхсветовой скоростью приводит к невозможной в нашем мире ситуации. Однако природа поставила еще более жесткие условия: недостижимо движение не только со сверхсветовой скоростью, но и со скоростью, равной скорости света, - к ней можно только приближаться. Из теории относительности следует, что при увеличении скорости движения возникают три обстоятельства: возрастает масса движущегося объекта, уменьшается его размер в направлении движения и замедляется течение времени на этом объекте (с точки зрения внешнего "покоящегося" наблюдателя). При обычных скоростях эти изменения ничтожно малы, но по мере приближения к скорости света они становятся все ощутимее, а в пределе - при скорости, равной с, - масса становится бесконечно большой, объект полностью теряет размер в направлении движения и время на нем останавливается. Поэтому никакое материальное тело не может достичь скорости света. Такой скоростью обладает только сам свет! (А также "всепроникающая" частица - нейтрино, которая, как и фотон, не может двигаться со скоростью, меньшей с.)
    Теперь о скорости передачи сигнала. Здесь уместно воспользоваться представлением света в виде электромагнитных волн. Что такое сигнал? Это некая информация, подлежащая передаче. Идеальная электромагнитная волна - это бесконечная синусоида строго одной частоты, и она не может нести никакой информации, ибо каждый период такой синусоиды в точности повторяет предыдущий. Cкорость перемещения фазы cинусоидальной волны - так называемая фазовая скорость - может в среде при определенных условиях превышать скорость света в вакууме. Здесь ограничения отсутствуют, так как фазовая скорость не является скоростью сигнала - его еще нет. Чтобы создать сигнал, надо сделать какую-то "отметку" на волне. Такой отметкой может быть, например, изменение любого из параметров волны - амплитуды, частоты или начальной фазы. Но как только отметка сделана, волна теряет синусоидальность. Она становится модулированной, состоящей из набора простых синусоидальных волн с различными амплитудами, частотами и начальными фазами - группы волн. Скорость перемещения отметки в модулированной волне и является скоростью сигнала. При распространении в среде эта скорость обычно совпадает с групповой скоростью, характеризующей распространение вышеупомянутой группы волн как целого (см. "Наука и жизнь" ? 2, 2000 г.). При обычных условиях групповая скорость, а следовательно, и скорость сигнала меньше скорости света в вакууме. Здесь не случайно употреблено выражение "при обычных условиях", ибо в некоторых случаях и групповая скорость может превышать с или вообще терять смысл, но тогда она не относится к распространению сигнала. В СТО устанавливается, что невозможна передача сигнала со скоростью, большей с. Почему это так? Потому, что препятствием для передачи любого сигнала со скоростью больше с служит все тот же закон причинности. Представим себе такую ситуацию. В некоторой точке А световая вспышка (событие 1) включает устройство, посылающее некий радиосигнал, а в удаленной точке В под действием этого радиосигнала происходит взрыв (событие 2). Понятно, что событие 1 (вспышка) - причина, а событие 2 (взрыв) - следствие, наступающее позже причины. Но если бы радиосигнал распространялся со сверхсветовой скоростью, наблюдатель вблизи точки В увидел бы сначала взрыв, а уже потом - дошедшую до него со скоростью с световую вспышку, причину взрыва. Другими словами, для этого наблюдателя событие 2 совершилось бы раньше, чем событие 1, то есть следствие опередило бы причину. Уместно подчеркнуть, что "сверхсветовой запрет" теории относительности накладывается только на движение материальных тел и передачу сигналов. Во многих ситуациях возможно движение с любой скоростью, но это будет движение не материальных объектов и не сигналов. Например, представим себе две лежащие в одной плоскости достаточно длинные линейки, одна из которых расположена горизонтально, а другая пересекает ее под малым углом. Если первую линейку двигать вниз (в направлении, указанном стрелкой) с большой скоростью, точку пересечения линеек можно заставить бежать сколь угодно быстро, но эта точка - не материальное тело. Другой пример: если взять фонарик (или, скажем, лазер, дающий узкий луч) и быстро описать им в воздухе дугу, то линейная скорость светового зайчика будет увеличиваться с расстоянием и на достаточно большом удалении превысит с. Световое пятно переместится между точками А и В со сверхсветовой скоростью, но это не будет передачей сигнала из А в В, так как такой световой зайчик не несет никакой информации о точке А.
    Казалось бы, вопрос о сверхсветовых скоростях решен. Но в 60-х годах двадцатого столетия физиками-теоретиками была выдвинута гипотеза существования сверхсветовых частиц, названных тахионами. Это очень странные частицы: теоретически они возможны, но во избежание противоречий с теорией относительности им пришлось приписать мнимую массу покоя. Физически мнимая масса не существует, это чисто математическая абстракция. Однако это не вызвало особой тревоги, поскольку тахионы не могут находиться в покое - они существуют (если существуют!) только при скоростях, превышающих скорость света в вакууме, а в этом случае масса тахиона оказывается вещественной. Здесь есть некоторая
Движение вещества с большими скоростями
Представьте себе трубу шириной со штат и длиной в половину Земли. Теперь представьте, что эта труба заполнена горячим газом, двигающимся со скоростью 50 тысяч километров в час. И еще представьте себе, что эта труба сделана не из металла, а из прозрачного магнитного поля. Теперь можно сказать, что вы представили себе одну из тысяч молодых спикул на активном Солнце.
Солнце
аналогия с фотонами: у фотона масса покоя равна нулю, но это просто означает, что фотон не может находиться в покое - свет нельзя остановить. Наиболее сложным оказалось, как и следовало ожидать, примирить тахионную гипотезу с законом причинности. Попытки, предпринимавшиеся в этом направлении, хотя и были достаточно остроумными, не привели к явному успеху. Экспериментально зарегистриро вать тахионы также никому не удалось. В итоге интерес к тахионам как к сверхсветовым элементарным частицам постепенно сошел на нет.
    Однако в 60-х же годах было экспериментально обнаружено явление, поначалу приведшее физиков в замешательство. Об этом подробно рассказано в статье А. Н. Ораевского "Сверхсветовые волны в усиливающих средах" (УФН ? 12, 1998 г.). Здесь мы кратко приведем суть дела, отсылая читателя, интересующегося подробностями, к указанной статье. Вскоре после открытия лазеров - в начале 60-х годов - возникла проблема получения коротких (длительностью порядка 1 нс = 10-9 с) импульсов света большой мощности. Для этого короткий лазерный импульс пропускался через оптический квантовый усилитель. Импульс расщеплялся светодели тельным зеркалом на две части. Одна из них, более мощная, направлялась в усилитель, а другая распространялась в воздухе и служила опорным импульсом, с которым можно было сравнивать импульс, прошедший через усилитель. Оба импульса подавались на фотоприемники, а их выходные сигналы могли визуально наблюдаться на экране осциллографа. Ожидалось, что световой импульс, проходящий через усилитель, испытает в нем некоторую задержку по сравнению с опорным импульсом, то есть скорость распространения света в усилителе будет меньше, чем в воздухе. Каково же было изумление исследователей, когда они обнаружили, что импульс распространялся через усилитель со скоростью не только большей, чем в воздухе, но и превышающей скорость света в вакууме в несколько раз!
    Оправившись от первого шока, физики стали искать причину столь неожиданного результата. Ни у кого не возникло даже малейшего сомнения в принципах специальной теории относительности, и именно это помогло найти правильное объяснение: если принципы СТО сохраняются, то ответ следует искать в свойствах усиливающей среды. Не вдаваясь здесь в детали, укажем лишь, что подробный анализ механизма действия усиливающей среды полностью прояснил ситуацию. Дело заключалось в изменении концентрации фотонов при распространении импульса - изменении, обусловленном изменением коэффициента усиления среды вплоть до отрицательного значения при прохождении задней части импульса, когда среда уже поглощает энергию, ибо ее собственный запас уже израсходован вследствие передачи ее световому импульсу. Поглощение вызывает не усиление, а ослабление импульса, и, таким образом, импульс оказывается усиленным в передней и ослабленным в задней его части. Представим себе, что мы наблюдаем за импульсом при помощи прибора, движущегося со скоростью света в среде усилителя. Если бы среда была прозрачной, мы видели бы застывший в неподвижности импульс. В среде же, в которой происходит упомянутый выше процесс, усиление переднего и ослабление заднего фронта импульса будет представляться наблюдателю так, что среда как бы подвинула импульс вперед. Но раз прибор (наблюдатель) движется со скоростью света, а импульс обгоняет его, то скорость импульса превышает скорость света!
    Именно этот эффект и был зарегистрирован экспериментаторами. И здесь действительно нет противоречия с теорией относительности: просто процесс усиления таков, что концентрация фотонов, вышедших раньше, оказывается больше, чем вышедших позже. Со сверхсветовой скоростью перемещаются не фотоны, а огибающая импульса, в частности его максимум, который и наблюдается на осциллографе. Таким образом, в то время как в обычных средах всегда происходит ослабление света и уменьшение его скорости, определяемое показателем преломления, в активных лазерных средах наблюдается не только усиление света, но и распространение импульса со сверхсветовой скоростью.


Вселенная - додекаэдр          Скорость - сверхсвет


Информация форум о заработке в интернете у нас на сайте.
2005 - , Проект "Исследование Солнечной системы"
Открыт 15.12.2005, E-mail: lobandrey@yandex.ru