Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://galspace.spb.ru/telescope.file/sol.htm
Дата изменения: Unknown Дата индексирования: Sun Apr 10 01:54:48 2016 Кодировка: Windows-1251 Поисковые слова: molecular cloud |
Заходите к нам на форум: задавайте вопросы - получайте ответы! |
|
Исследование Солнечной Системы - Наблюдения
| |||||
Астрономические наблюдения |
Наблюдения за Солнцем
Основным назначением телескопа является собрать как можно больше света от источника. Все небесные тела находятся от нас так далеко, что пучек света, идущий от любого из них можно считать параллельными. Мы способны видеть звезды не слабее 6m, потому, что наш глаз не может получить достаточное для регистрации количество света, от более слабых объектов. Причина этого в том, что наш зрачек, имеющий диаметр в 5 мм, не пропускает достаточное количество света. Тут нам на помощь приходит телескоп. Его объектив имеет гораздо более крупный диаметр, а следовательно, и света он собирает больше. Как же устроен телескоп? Телескоп состоит из двух основных частей - объектива и окуляра. Объектив собирает лучи в одну точку - фокус. Расстояние от объектива до фокуса называется фокусным расстоянием. Это, наряду с диаметром объектива, является основными характеристиками телескопа. Что это нам дает? Дело в том, что возможности человеческого глаза ограниченны. Рассматривая какой-либо предмет, мы стараемся поднести его как можно ближе к глазам. Но ближе чем на 20 см, мы ничего разглядеть не сможем и для этого нам понадобиться увеличительное стекло. Значит, что предмет в 0.1 мм мы можем разглядеть с расстояния не более 25 см, что дает нам угол около 1,5 минуты. Но под таким углом на том расстоянии, на которое от нас удалена Луна, мы увидим только объект размером не менее 150 км. Объектив телескопа позволяет нам построить изображение Луны прямо около глаза. Но это изображение получается в виде точки, как же нам его разглядеть? Поступим точно так же как и с любым другим маленьким объектом - воспользуемся увеличительным стеклом. Именно роль этого увеличительного стекла и выполняет окуляр. Значит, телескоп позволит нам собрать больше света от объекта и увеличить угол, под которым нам его видно.
Но как узнать размеры построенного объективом изображения. Если за объективом установить экран, то на нем мы увидим изображение объекта. Размер этого изображения будет равен произведению фокусного расстояния объектива на угловой размер объекта. Зная, что угловой диаметр Солнца равен приблизительно 32', мы можем получить следующую зависимость - фокусное расстояние в метрах равно диаметру изображения Солнца в сантиметрах. Кроме того, очень важно знать разрешающую способность телескопа, то есть будут видны отдельно друг от друга. Этот показатель тесно связан с диаметром и фокусным расстоянием объектива. Теперь поговорим о том, чем же отличается солнечный телескоп своего обычного собрата. Солнце - объект очень яркий. Поэтому при наблюдениях Солнца необходимость собирать больше света отпадает. Даже наоборот, необходимо снизить яркость изображения. Однако же уменьшать диаметр объектива мы не можем, так как разрешающая способность телескопа так же уменьшиться. Именно в этом и заключается особенность солнечного телескопа. Так как же решить эту проблему? Наиболее простым способом является проекция изображения Солнца, постоянного телескопом на экран, когда наблюдатель не смотрит непосредственно в окуляр. а смотрит на специально сконструированный экран. Для объяснения действия этого метода обратимся к рисунку 2. Итак, если мы посмотрим на Солнце в окуляр, то весь собранный телескопом свет будет собран в пучок, равный диаметру окуляра (точка D1). или диаметру зрачка. Другими словами свет, собранный со всей площади объектива, будет, при сохраненной интенсивности, иметь значительно меньший диаметр пучка. Для понимания обратимся к такому примеру: возьмем два груза, оба весом в 1 кг, но один площадью в 1 метр, а другой в 10 см и положим их на натянутую пленку. Разуметься тот груз, который имеет меньшую площадь. будет оказывать большее влияние на пленку. Остановимся на том, каким должен быть солнечный экран. Экран должен смещаться вдоль оптической оси, фиксируясь стопорными винтами на салазках. При этом не должно быть 'свисания' экрана, то есть ситуации, когда центр экрана, под действием веса самого экрана находиться ниже оптической оси. Экран должен быть защищен от прямого солнечного света, для чего делаются картонные бортики, высотой около 10-ти сантиметром. Кроме того, если у вас рефрактор, или любая другая система телескопа, у которой окулярный узел находиться сзади, то на его трубе должен быть надет защитный экран, который в 3-4 раза больше основного. Если у вас рефлектор системы ньютона, или любой другой системы, при которой окуляр находиться сбоку, то достаточно только бортиков на экране. Однако, на некотором расстоянии от окуляра, где расположен экран, диаметр светового пучка, будет больше, при той же интенсивности, а значит яркость изображения снизиться. Значит, при наблюдениях Солнца, методом проекции, оберегает наблюдателя от травм. Второй метод заключается в том, что бы в оптическую схему внести солнечный светофильтр. Фильтры могут быть двух видов. Первые из них устанавливаться перед объективом, они имеют большую пропускающую способность. Второй тип фильтров ставиться за окуляром. они почти не пропускают свет. Более безопасным и удобным в использовании является первый тип фильтров. Это объясняется тем, что окулярный фильтр может быть поврежден, если он не рассчитан под данный телескоп. Кроме того, окулярный фильтр, может упасть и тогда наблюдатель может лишиться зрения. В последнее время все большей популярностью пользуются фильтры из специальной пленки - Astrosolar. Для этого изготавливается специальная крышка с отверстием, равным диаметру объектива, которая будет надеваться на объектив. Отверстие в крышки закрывается пленкой. В итоге получается идеальный фильтр.
Кроме того, есть еще ряд способов снизить яркость изображения. Например. в зеркальных телескопах можно не покрывать зеркало отражающим слоем, тогда большая часть света будет проходить за отражающую грань зеркала, и не будет попадать в фокус, что снизит яркость. Другим способом является постройка длиннофокусных телескопов, это так же снижает яркость. Однако и в том и в другом случае следует применять фильтры. Еще одним способом наблюдения Солнца в белом свете, является целостатная установка. Принцип ее действия заключается в следующем. Главная оптическая схема телескопа располагается горизонтально и является стационарной. Солнечный свет на главное зеркало направляется при помощи системы плоских оптических зеркал, которые посылают на главное зеркало солнечный зайчик. Приблизительная схема такой установки представлена на рисунке 3. Поскольку склонение Солнца меняется в течении года, солнечный свет будет падать на целостатное зеркало под разными углами. Для того, что бы пучок света всегда попадал на главное зеркало, в системе должно быть подвижное зеркало, смещающееся вдоль оси объектива. Поэтому целостатная установка состоит из двух компонентов: подвижного зеркала и неподвижного зеркала - собственно целостата (рис. 4.). Подвижное зеркало находиться южнее целостата. Это может привести к тому, что тень от него, или его монтировки может попасть на целостат. Для того, что бы избежать подобной ситуации, предусмотрена возможность перемещения целостата по линии запад-восток. При этом целостат должен непременно оставаться в таком положении, что бы ось его вращения была направлена на Полюс Мира. Солнечная активность. Циклы.
Солнечной активностью называют совокупность нестационарных явлений на Солнце (пятна, факелы, протуберанцы, вспышки, флоккулы) возмущенные области, солнечную радио... и другие излучения Солнца. Эти явления тесно связаны между собой и обычно и обычно появляются вместе в некоторой активной области Солнца. Солнечная активность обычно характеризуется по пятнообразовательной деятельности Солнца. Для ее регистрации используются несколько распространенных индексов. Самыми известными из них являются индекс Вольфа и коэффициент INTER SOL. Индекс Вольфа определяется по формуле: W=R*(10g+f), где: R коэффициент корреляции, определяемый из условий наблюдения и характерсrстик вашего телескопа, но лично я посоветовал вам брать его равным 1: g - количество групп на диске; f - общее число пятен. Коэффсrцсгент INTER SOL определяется по формуле: IS=g+grfp+grfn+efp+ef, где: grfp - число пятен с полутенями в группах; Grfn - число пятен без полутеней в группах; efp - число одиночных пятен с полутенями: ef - число одиночных пятен без полутеней; ПОМНИТЕ, ЧТО ОДИНОЧНОЕ ПЯТНО В РАСЧЕТАХ ТАК ЖЕ ПРИНИМАЕТСЯ ЗА ОТДЕЛЬНУЮ ГРУПЛУ. За международную систему приняты числа Вольфа публикуемые Цюрихской обсерваторией с 1849. для которых коэффициент корреляции R равен 1. Не смотря на довольно большую неточность этих индексов и их субъективности для каждого отдельного наблюдателя. они имеют то преимущество, что их значения определены на довольно продолжительный промежуток времени (индекс Вольфа известен за последние 258 лет с 1749). Благодаря этому именно индекс Вольфа используется для выявления корреляций между активностью Солнца, и какими либо биологическими и геофизическими явлениями. Важной особенностью солнечной активности является ее цикличность. Циклы имеют различную продолжительность. Не так давно мы с вами, уважаемые коллеги стали свидетелями очередного 23-го максимума 11-го летнего цикла солнечной активности. Но существуют ли еще какие-либо циклы активности, кроме вышеупомянутого 11-тиилетнего? В периоды максимума цикла активные области расположены по всему солнечному диску, их много и они хорошо развиты. Период минимума они располагаются вблизи экватора их не много. и они развиты слабо. Видимым проявлением активных областей являются солнечные пятна. факелы, протуберанцы, волокна, флоккулы и пр. Наиболее известным и изученным является 11-летний цикл, открытый Генрихом Швабе и подтвержденный Робертом Вольфом, который исследовал изменение активности солнца при помощи предложенного им индекса Вольфа, за два с половиной столетия. Изменение активности Солнца с периодом равным 11,1 года носит название закона Швабе - Вольфа. Особенностью 11-ти летнего цикла является то, что полярность изменяются в течении каждого цикла на противоположенную как в группах, где меняются полярности главных пятен, так и общее магнитного поля Солнца. Существует предположение, что именно магнитное поле ответственно за цикличность солнечной активности. Также предполагается существование 22, 44, 55 и 88 летних циклов изменения активности. Установлено что величина максимума циклов меняется с периодом около 80 лет. Эти периоды проявляются непосредственно на графике активности солнца. Но ученые, изучив кольца на спилах деревьев, ленточную глину, сталактиты, залежи ископаемых, раковинам моллюсков и другие признаки, предположили существование и более продолжительных циклов, длительностью около 110, 210, 420 лет. А так же и так называемые вековые продолжительностью и сверхвековые циклы 2400, 35000, 100 000 и, даже, 200 - 300 миллионов лет. Следует отметить, что цикличность характерна для всех проявлений солнечной активности. В последнее время было обращено внимание на то, что влиять на циклы могут и другие тела, такие как планеты-гиганты, соседние звезды и их положение относительно друг друга (к примеру можно посмотреть на влияние суммарной гравитации планет во время парадов). Возможно, особенно продолжительные сверхвековые циклы связанны по большей своей части с положением Солнца в Млечном Пути, точнее с его вращением вокруг центра галактики. Вообще любой астроном-любитель может, проводя регулярные наблюдения Солнца сравнивать ее график с графиками интенсивности каких либо явлений связанных с атмосферой, биосферой и другие. Но зачем уделять так много внимания изучению активности Солнца? Ответ заключается в том, что наше дневное светило оказывает огромное влияние на землю и на земную жизнь. Увеличение интенсивности так называемого 'солнечного ветра' - потока заряженных частиц - корпускул - испускаемых Солнцем, может вызвать не только прекрасные полярные сияния, но и возмущения в магнитосфере земли - Магнитные бури - которые влияют не только на оборудование, что может привести к техногенным авариям. Но и непосредственно не здоровье человека. Причем не только физическое, но и психическое. В периоды максимума, например, учащаются случаи самоубийств. Активность солнца влияет так же на урожайность, рождаемость и смертность, и многое другое. Вообще любой астроном-любитель может, проводя регулярные наблюдения Солнца сравнивать ее график с графиками интенсивности каких либо явлений связанных с атмосферой, биосферой и другие. Как наблюдать Солнце
Теперь давайте перейдем к тому, как правильно проводить наблюдения Солнца, как оформлять их, что и как надо рассчитывать, для чего. В общем, как я уже говорил, обо всем, что надо знать начинающему астроному-солнечнику для работы. Основной уклон я буду делать на зарисовку и оформления зарисовок Солнца. Хотя в конце остановлюсь и на фотографических наблюдениях. Итак, основной и, на мой взгляд, грубейшей ошибкой является то. что зарисовка производится по визуальным наблюдениям, когда наблюдатель непосредственно смотрит на Солнце и зарисовывает потом то, что увидел. Гораздо более точным является способ проекции на экран. Для начала следует определиться с диаметром диска Солнца, то есть с диаметром зарисовки. Здесь надо учитывать яркость изображения, даваемое Вашим телескопом и его разрешение. Я на 62 мм рефракторе делал диаметр 15 см. На мой взгляд, такой диаметр наиболее удобен. Наблюдения Солнца проводятся в два этапа. Первый - непосредственно зарисовка диска Солнца, включающая зарисовку образований на диске Солнца, описание атмосферы. Второй - камеральная обработка результатов, включающая классификации групп пятен и факелов, заполнение бланка, определение координат и площадей пятен и факелов. Теперь наводим телескоп на Солнце. Для более удобного наведения можно использовать тень телескопа на экране. Солнце будет в поле зрения телескопа, если тень от последнего не вытянутая и не искаженная, а прямая. Итак, на экране, на котором у нас уже укреплен лист с начерченной окружностью необходимого диаметра, появляется изображение Солнца. Следует отметить, что не стоит крепить к экрану сам бланк наблюдений, лучше зарисовывать на отдельном листе, а потом зарисовку прикреплять к бланку. Так же стоит поступать, проводя и подробную зарисовку групп пятен. Теперь регулируем экран так, что бы изображение Солнца точно совпало с окружностью. При зарисовке деталей не желательно отмечать все мелкие детали, т.к. это часто приводит к нарушению масштаба. Лучше, зарисовав основные детали групп на общем изображении диска Солнца, пронумеровать группы и с обратной стороны листа сделать подробную зарисовку групп пятен. На основной же зарисовке отметьте ориентацию по сторонам горизонта (N,E,S,W) и суточную параллель. На изображении последней необходимо отметить путь смещения солнечного экрана (для чего необходимо отключить часовой привод) по смещению пятен (рис. 6).
Что мы увидим? Первое - это группы пятен. Затем на краю диска Солнца мы заметим, что яркость изображения меньше, мы увидим яркие факелы. Теперь нам надо с максимальной точностью зарисовать все образования на диске Солнца. Поэтому мы будем зарисовывать непосредственно с изображения, то есть лист будет лежать на экране. на нем будет спроецировано изображение Солнца, и мы будем точно обводить все образования на солнечном диске. Теперь нам надо провести суточную параллель. Для этого отмечаем положение какого-либо пятна, в близи солнечного экватора в нескольких точках по мере смещения солнечного диска. Отмечу, что зарисовку мы ведем при постоянном гидировании, или включенном часовом механизме, а суточную параллель отмечаем при не подвижном телескопе (Рис. 13). Теперь надо отметить положение севера, юга, запада и востока. Запад - это то направление, куда смещается диск Солнца при остановке гидирования. Север будет находиться в том же направлении, что и северный полюс Земли. После того, как мы закончили зарисовку всего диска Солнца, нам надо сделать подробную зарисовку групп пятен по отдельности. Здесь уже можно не использовать экран, а, надев солнечный фильтр, проводить визуальные наблюдения, делая зарисовку по памяти, так как тут не так важна точность положения и не большая погрешность, характерная для таких наблюдений допустима. Главное - как можно подробнее зарисовать группу пятен. Для этого следует поменять увеличение телескопа на большее. Для характеристики атмосферы следует разработать бальную систему оценки. Я использую следующую систему двух классификаций оговаривающих, как облачность, так и спокойствие атмосферы. Так же следует отмечать различные нюансы, для чего должна быть графа "примечания". Теперь поговорим о том, как следует оформлять свои наблюдения. Необходимо составить специальный бланк. Он имеет две стороны. На лицевой стороне бланка расположены: данные о наблюдении; условия наблюдений; характеристика диска Солнца и зарисовка диска. Для примера я приведу "шапку" своего бланка:
В 'шапке' имеются следующие обозначения; g - количество групп пятен; grfp - количество пятен с полутенями в группах; grfn - количество пятен без полутеней в группах: efp - количество одиночных пятен с полутенями: efn -количество одиночных пятен без полутеней; W - индекс Вольфа рассчитывается по формуле W=R(10*g+f), f - общее количество пятен; 1s - индекс INTER SOL рассчитывается по формуле Is= g+grfp+grfn+efp+efn: R - коэффициент пропорциональности. Помимо подробных зарисовок следует производить классификацию пятен по любой выбранной вами классификации. Либо Цюрихкскую классификацию, либо можно использовать классификацию Цесевича. Теперь, после того как мы закончили первый этап, перейдем к обработке. Для начала классифицируем образования на Солнце. Лично я использую обе эти классификации. Отмечая для каждой группы классы, как по Цюрихской классификации, так и по классификации Цесевича. Так же следует описать яркость факельного поля и его характеристики. Очень важной частью регулярных наблюдений нашего дневного светила является измерение гелиографических координат пятен. Задача эта требует высокой точности зарисовки. Для измерения координат и используются специальные гелиографические координатные сетки (они приведены в приложении 2). Так как Земля вращается вокруг Солнца, а ось вращения Солнца не перпендикулярна к плоскости орбиты Земли, мы видим полюса Солнца в разных точках диска. Причем иногда можно видеть оба полюса, иногда какой то один. Причем при этом солнечный экватор может проходить то южнее, то севернее центра солнечного диска. Расстояние между солнечным экватором и центром солнечного диска измеряется в гелиографических градусах и называется гелиографическая широта центра диска (В0). В зависимости от значения В0 выбирается та или иная гелиоргафическая сетка. Сетки бывают в нескольких видов (0,00; +- 1,00; +-2,00; +- 3,00; .... +-7.00). Кроме гелиографической широты центра солнечного диска необходимо знать угол, между направлением экватора и суточной параллели (Р). Этот угол бывает положительным, если восточный край суточной параллели расположен севернее от экватора и отрицательным если южнее. Еще одной необходимой величиной является гелиографическая долгота центрального меридиана (L0). Величина В0, как и величины L0, Р0, d (угловой видимый диаметр солнечного диска) берутся из астрономического календаря. Рассмотрим подробнее как определять координаты образований на Солнце. Для удобства сетки надо напечатать на прозрачном матеаиале, в таком масштабе, что бы диаметр сетки, был равен диаметру зарисовки. Причем, лично я не советую делать сетку напечатанной прямо на зарисовке, то есть проводить зарисовку на сетки, так как это более затратно, да и иногда пятно может попасть на линию сетки, что может привести к 'потере' пятна. Во-первых, выберем подходящую сетку, согласно величине В0, округлив ее до целого. Допустим значение В0 равно -3,21, значит нам подходит сетка В = - 3њ. Для того, чтобы правильно наложить сетку мы определяем положение солнечного экватора. Как это сделать? Нам известно положение суточной параллели и известен угол между ней и экватором. По этому углу мы и находим положение солнечного экватора. Для удобства на краях сетку и приведены градусные деления. Допустим значение Р у нас равно - 26,03, значит экватор с восточной стороны будет на 26,03 севернее суточной параллели. Построив угол Р с вершиной в центре солнечного диска мы получаем положение солнечного экватора.
Мы разместили гелиографическую сетку. Теперь нам надо интерполировать значение L0 для времени наблюдений. В календаре оно приводиться для 0h всемирного времени. НЕ ЗАБУДЬТЕ ПЕРЕВЕСТИ ДАННЫЕ КАЛЕНДАРЯ ИЗ ВСЕМИРНОГО ВРЕМЕНИ К МЕСТНОМУ. Как интерполировать? Допустим, что 2-го апреля, LO равно 134,54, а 3-го апреля - 122.21, то есть за сутки величина LO уменьшилась на 12,33 (обозначим dL) Отсюда не сложно определить долготу центрального меридиана для момента наблюдения. Допустим, мы наблюдаем в Москве в 12 ч 43 мин по московскому времени, значит, по всемирному времени это будет (не забудем, что в апреле время летнее и разница между московским и всемирным временем составляет 4-е часа. тогда как для зимнего времени 3 часа). 8 ч 43 мин. Это составляет 0,36 (всего 24 часа, 8 ч 43 мин - это 8, 75 часа, значит 8, 75 / 24 = 3,64) в долях суток (обозначим i). Отсюда можно найти значение L в момент наблюдений: LH = L0 - dL*i= 134.54-12.33*0.36=130,10 Долготы растут с востока на запад, значит, для пятен в восточной полусфере мы должны из Lн вычесть их угловое расстояние до центрального меридиана (меридиан, проходящий через центр сетки), а для пятен в западной полусфере прибавить к Lн угловое расстояние до данного пятна. Теперь нам необходимо определить площади групп пятен, крупных пятен, и факелов (факельных полей). Основная сложность здесь в том, что из-за сферичности Солнца образования на краях диска будут несколько вытянуты вдоль поперечника и меньше вдоль солнечного радиуса. Для определения истинного размера существует простая формула. Для направления радиуса: dист = dнабл * R/r. Где: R - радиус изображения диска Солнца; r - расстояние объекта от центра солнечного диска в тех же единицах, что и радиус. Для направления перпендикулярному радиусу направлению: Sист = Sнабл * R/r. Sнабл можно измерять в квадратных секундах дуги. Если, вы измеряете площадь в гелиографических градусах, то исправление производиться автоматически, так как сетка координат так же имеет искажение. Нужно только помнить, что одим квадратмый градус, равем 1,5*108км2. На практике я поступаю так. Сначала измеряю площадь в квадратных миллиметрах. Затем, используя сведения о масштабе изображения Солнца и расстоянии пятна от центра диска, можно перейти к квадратным километрам на Солнце. Диаметр Солнца, как известно. 1 392 000 км, а диаметр зарисовки 15 см, или 0.00015 км. Получаем, что в одном сантиметре у нас 9 280 000 000 см, или 92 800 км.
Теперь поговорим о фотографических наблюдениях Солнца. Фотографирование имеет то преимущество, что время, затрачиваемое на наблюдение, сокращается в разы. Но есть и недостатки. Основным из них является то, что наша атмосфера не стабильна и слабые пятна видны не постоянно, они могут, то появляться, то замываться. Это вынуждает нас делать серию снимков. Кроме того, при легкой переменной облачности, часть диска может быть закрыта, что вынудит нас ждать, пока откроется весь диск, тогда как при зарисовывании, мы можем работать на открытом участке диска. Но, тем не менее, все больше астрономов-любителей используют фотографию. для регулярных наблюдений Солнца. Особенно это удобно с появлением цифровой фотографии. Как же правильно наблюдать Солнце. Сделав серию снимков, надо выбрать из них тот, на котором отображены все пятна, и вставить его в такой же бланк, как и при визуальных наблюдениях. Подробное фотографирование групп пятен, делается при большем увеличении. Теперь стоит определить суточную параллель. Это можно сделать, так же как и при визуальных наблюдениях. Только вместо того, что бы отмечать одно и то же пятно по мере движения солнечного диска, необходимо на неподвижном телескопе сделать два - три кадра. Затем сложить эти кадры в один (Рис 10). Либо просто сделать несколько экспозиций на один кадр. Затем суточную параллель переносим на снимок Солнца. В остальном все измерения и расчеты проводиться так же. как описано выше. Автор:
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
контрольный кабель на сайте ee-h.ru
|