Документ взят из кэша поисковой машины. Адрес оригинального документа : http://edu.zelenogorsk.ru/olimp/eolimp/2002/mat02z67.htm
Дата изменения: Sun Nov 17 20:00:00 2002
Дата индексирования: Tue Oct 2 04:22:55 2012
Кодировка: Windows-1251

Поисковые слова: р п п п п п п п п п п п п п п п п п п п п п п п п п
Задачи по математике 6-7
logo1 [9261 байт]

home
2002
2001
2000
1999
1998
1997

edu.zelenogorsk.ru

"Открытая дистанционная олимпиада - 2002"

Задачи по математике

МАТЕМАТИКА.

Задача 1. (1 балл) Три ученика одной школы - Коля, Дима, и Наташа участвовали в районной математической олимпиаде и получили одну первую, одну вторую и одну третью премии. Но им не сообщили, кто какую премию получил. Позже Таня сказала, что Дима получил не первую, Коля - не вторую, Наташа получила вторую премию. Потом оказалось, что из этих трех высказываний верным было только одно, а два ложны. Какую премию получил каждый ученик?


Задача 2. (2 балла) Собака погналась за лисицей. В то время когда собака делает 2 скачка, лисица делает 3 скачка, но скачок лисицы равен 1 м, а скачок собаки в 2 раза больше. Какое расстояние пробежит собака, чтобы догнать лисицу, если первоначальное расстояние между ними равно 50 м?


Задача 3. (3 балла) В данном примере одинаковыми буквами обозначены одинаковые цифры, разными - разные цифры. Восстановите цифровую запись примера:

ПЛОМБА х 5=АПЛОМБ

Задача 4. (3 балла) В таблицу 6х6 хулиган Вася расставляет числа 0, 1 и -1. После этого пионер Петя выписывает на доске сумму чисел, взятых по строкам, столбцам и двум большим диагоналям этой таблицы. Пионер Петя утверждает, что обязательно получит два одинаковых числа. Может ли хулиган Вася опровергнуть утверждение, что пионер никогда не лжет?


Задача 5. (3 балла) Сколько двоек будет в разложении на простые множители числа 2002! (Примечание: 2002! = 1·2·3·4 ... · 2002)


Задача 6. (3 балла) На столе стоят 16 стаканов. Из них 15 стаканов стоят правильно, а один перевернут донышком вверх. Разрешается одновременно переворачивать любые четыре стакана. Можно ли, повторяя эту операцию, поставить все стаканы правильно?


Задача 7. (4 балла) Дан бумажный круг. Можно ли с помощью ножниц разрезать его на несколько частей, из которых складывается квадрат той же площади? (Резать разрешается по прямым и дугам окружностей).