Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://comet.sai.msu.ru/~gmr/prog_e.html
Дата изменения: Fri Mar 2 12:22:50 2001 Дата индексирования: Mon Oct 1 19:39:00 2012 Кодировка: Поисковые слова: http www.space.hobby.ru |
Program of the Course of Radio Astronomy
(
Moscow State University, Physics Department , Astronomy Division , 4th year, 60 hours in total)Authors: Valentina K. Konnikova, Georgij M. Rudnitskij
Introduction (2 h). A historical outline. Atmospheric absorption of emission at various wavelengths. Main definitions in radio astronomy.
Radioastronomical antennas (6 h). Types of the antennas used in radio astronomy. Main parameters of antennas. Determination of source angular sizes and positions. Antenna noise temperature and its constituents. The confusion effect. Antenna as a filter of spatial frequencies. The uv-plane synthesis. Interferometers. Aperture synthesis.
Radioastronomical receivers (6 h). Radiometric gain. Main types of the receivers. Noise temperature and sensitivity. Parameters of present-day radio telescopes. Spectral-line observations. Spectral-line receivers.
Methods of the observations (2 h). Absolute and relative measurements of radio emission intensity. Calibration. Radio emission polarization measurements.
Recording and processing radioastronomical data (2 h).
Instruments and methods of spaceborne radio astronomy (2 h).
Catalogs of radio sources (2 h). Parameters of the existing catalogs. Catalogs of extended radio emission.
Optical identifications of radio sources (2 h).
Mechanisms of radio emission in astrophysical conditions (6 h). The radiative transfer equation. Bremsstrahlung (free-free emission) of ionized gas. Magnetobremsstrahlung. Synchrotron emission. Curvature emission. Cyclotron maser. Generation of radio emission by plasma oscillations. Propagation of radio waves in plasma. Refractive index, phase and group velocities. Rotation of the polarization plane in a magnetized plasma. Dispersion of radio waves. Spectral-line emission of atoms and molecules. Molecular maser emission.
The Sun (4 h). Radio emission of the quiet Sun. Thermal emission from the corona and chromosphere at various wavelengths. Refraction of radiowaves. Slowly varying component of the solar radio emission. Radio emission associated with solar flares. Microwave bursts. Generation of radiowaves by a beam of particles crossing the corona and by shock fronts. Noise storms.
The Solar system (2 h). Radio emission of the Moon, theory and results. Radio emission of planets and comets. Radar studies of the Moon, planets, and comets. Meteor radio astronomy.
The Galaxy (16 h). Synchrotron radio emission of the Galaxy. The data on cosmic rays in the Galaxy. Mechanisms of acceleration of cosmic rays. The halo of the Galaxy. The emission of the interstellar neutral hydrogen. The spiral structure of the Galaxy as observed in the 21-cm line. The gas velocity field in the Galaxy. The kinematical method of finding distances in the Galaxy. Absorption in the 21-cm line. Cool hydrogen clouds and hot intercloud medium. HII regions. Their radio emission in the continuum and radio recombination lines. The basics of molecular spectra. Radio emission of interstellar molecules. Molecular absorption lines. Giant molecular clouds, their connection to star-forming complexes in the Galaxy. Cosmic molecular masers in star-forming regions and in the envelopes of late-type stars. Mechanisms of formation of interstellar molecules. Radio stars. Radio emission of early-type stars with ionized envelopes. Radio emission during the explosions of novae and supernovae. Radio emission from UV Cet- and RS CVn-type stars, from close binary systems. Supernova remnants. Pulsars. Radioastronomical aspects of search for extraterrestrial intelligence.
Extragalactic radio astronomy (6 h). Radio emission of “normal and active galaxies in the continuum and in radio lines. Radio galaxies. Quasistellar radio sources.
Radio astronomy and cosmology (2 h). Statistical counts of radio sources. The logN–logS curve. Cosmological tests. The microwave background.
Literature
Kraus, J. D. Radio Astronomy, New York, McGraw-Hill, 1966.
Rohlfs, K., Wilson, T. L. Tools of Radio Astronomy, 2nd ed. Springer, Berlin, 1996.
Pacholczyk, A. G. Radio Astrophysics, W. H. Freeman & Co., San Francisco, 1969.
Ginzburg, V. L. Theoretical Physics and Astrophysics, Pergamon, Oxford, 1979.
Zheleznyakov, V. V. Radiation in Astrophysical Plasmas, Kluwer, Dordrecht, 1996.
Frontiers of Astrophysics, Avrett, E. H., ed., Harvard University Press, Cambridge, Mass., 1976.
Galactic and Extragalactic Radio Astronomy, Springer, New York, 1974.
Christiansen, W. N., HЖgbom, J. A., Radiotelescopes (Cambridge monographs on physics), University Press, Cambridge, 1969
Thompson, A. R., Moran, J. M., Swenson, G. W. Interferometry and Synthesis in Radio Astronomy, John Wiley & Sons, New York, 1986.
KrЭger, A. Introduction to Solar Radio Astronomy and Radio Physics (Geophysics and Astrophysics Monographs, vol. 16), Reidel, Dordrecht, 1979.
Zheleznyakov, V. V. Radio Emission of the Sun and Planets, Pergamon, Oxford, 1970.
Kaplan, S. A., Pikelner, S. B. The Interstellar Medium, Harvard University Press, Cambridge, Mass., 1970.
Shklovsky, I. S., Supernovae, Wiley, London, 1968.
Lozinskaya, T. A. Supernovae and Stellar Wind in the Interstellar Medium, AIP, New York, 1992.
Smith, F. G. Pulsars, Cambridge University Press, Cambridge, 1977.
Manchester, R. N., Taylor, J. H. Pulsars, W. H. Freeman & Co., San Francisco, 1977.
Pacholczyk, A. G. Radio Galaxies, Pergamon Press, Oxford, 1977.
Burbidge, J., Burbidge, M. Quasi-Stellar Objects, W. H. Freeman & Co., San Francisco, 1967.
Peebles, P. J. E., Physical Cosmology, Princeton University Press, Princeton, N. J., 1971.