Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://mavr.sao.ru/hq/katya/InterCloud/kolos_SAO_2008.pdf
Äàòà èçìåíåíèÿ: Wed Feb 24 16:35:52 2010
Äàòà èíäåêñèðîâàíèÿ: Tue Oct 2 10:57:43 2012
Êîäèðîâêà:

Ïîèñêîâûå ñëîâà: ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï
Novel astrochemical aspects of cyanoacetylene-related molecules
R. KOLOS1,2 , M. GRONOWSKI1 & M. TUROWSKI
1

1) Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw 2) Faculty of Mathematics and Natural Sciences, Cardinal S. Wyszynski University, Warsaw

C. CREPIN, S. DOUIN, & S. BOYE-PERONNE
Laboratoire de Photophysique MolÈculaire du CNRS, UniversitÈ Paris 11, Orsay

SAO Meeting, August 2008


Focus on:

1. Cyanovinylidene, the branched izomer of H-CC-CN 2. Cyanoacetylide, the anion produced from H-CC-CN

SAO Meeting, August 2008


INTERSTELLAR MOLECULES
2
H2 AlF AlCl C2 CH CH+ CN CO CO+ CP CSi HCl KCl NH NO+ NS NaCl OH PN SO SO+ SiN SiO SiS CS HF SH FeO

3
C2H C2O C2S CH2

4
c-C3H l-C3H C3N C3O C3S CH2D+? HCCN HCNH+ HNCO HNCS HOCO+ H2CO H2CN H2CS H3O+ NH3 SiC3 HC2H

5
C5 C4H C4Si l-C3H2 c-C3H2 CH2CN CH4

6
C5H l-H2C4 C2H4 CH3CN CH3NC CH3OH CH3SH HC3NH+ HC2CHO NH2CHO HC4H

7
C6H CH2CHCN CH3C2H

8
CH2C3N HCOOCH3 CH2COOH? C7H CH2OHCHO HC6H

9 HC7N
CH3CH2CN (CH2)2O CH3CH2OH CH3C4H C8H

10
CH3C5N? (CH2)2CO NH2CH2COOH?

11 12 13 HC9N C6H6 HC11N

HC5N
HCOCH3 NH2CH3 c-C2H4O CH2CHOH

HCN
HCO HCO+ HCS+ HOC+ H2O H2S HNC HNO MgCN MgNC N2H+ N2O NaCN OCS SO2 c-SiC2 CO2 NH2 SiCN H3+ C3 AlNC

HC3N
HC2NC HCOOH H2CNH H2C2O H2NCN HNC3 SiH4 H2COH+


HCN HNC


H ­CC­C = N:
izonitrile


:=== ­CC­C N ­ H
imine

M


J. Cernicharo, M. Guelin , and C. Kahane; Astron. Astrophys. Suppl. Ser. 142, (2000) 181

IRC +10 216

2 mm range

HC3N HC3N C3N C4H C4H C4H C3N C3N HC3N HC3N C4H

C4H

C3N

Frequency (GHz)


IR

Cernicharo, J., Heras, A.M., Tielens, A.G.G.M., Pardo, J.R., Herpin, F., GuÈlin, M., and Waters, L.B.F.M.; 2001, Ap. J. 546, L123

Synthetic spectrum


Obse rvatio ns

nts me ure eas .m Lab

Qu ant um che m.


precursor

solid Ar 12 K


to vacuum substrate

photolysis (UV) analysis (UV, Vis, IR)

window `matrix' rare gas + precursor


CWRD:

transparent plate (CsI, quartz, sapphire), 12 K

wysokie napon high tensi .

mipreaninsorazowae gas esz cur a g & rar

cold-window-radial-discharge

Th P ys.L d ers, n7 (1995) a 9 R. Kolos; Chem.ehColett-Wi24dow-R28dial-Discharge (CWRD)

R. Kolos; Chem. Phys. Lett. 247 (1995) 289


R. Kolos, Chem. Phys. Letters 247 (1995) 289


175 75
5 1.00

11 8 .8

1.302

1.268

B =4668.5 MHz 0
10 4 18 7

(ex p.: 4668.3 MHz )

KOLOS & SOBOLEWSKI, Chem.Phys.Letters 344 (2001) 625


HNCCC IDENTIFICATION in IR
Mode Theory B3LYP/6-311++G** (scaled with 0.96) cm-1 km/mol 3567 2202 1880 2658 2171 1855 3557 2193 1869 448 1590 27 560 1408 12 435 1591 17 Experimental (in solid Ar) cm-1 3562 2205 1905 2611 2162 1890 3552 2195 1895 relat. int. 0.4 1 0.06 0.5 1

1

H14NCCC

1 2 3 1 2 3 1 2 3

2

H NCCC

14

1

H15NCCC

0.4 1

KOLOS & SOBOLEWSKI, Chem.Phys.Letters 344 (2001) 625


1.066 (1.063)

1.169 (1.159)

1.284 (1.275)

1.273 (1.258)

CCSD(T) (B3LYP)

H----C----N----C----C
+.76 -.55 +.52 +.12 -.85

Be = 4992 MHz
_________________________________________________________________

µ = 8.1 D

(CCD/aug-cc-pVTZ)

KOLOS & DOBROWOLSKI; Chem. Phys. Letters 369 (2003) 75


HC3N isomers
CCSD(T)/aug-cc-pVTZ
species Rel. energy (kcal/mol)

SPACE

LAB

HCCCN

0 26.6 50.9 77.6 48.6

+ + + -

+ + + + -

HCCNC

CCCNH

HCNCC

CC(H)CN

KOLOS & DOBROWOLSKI; Chem. Phys. Letters 369 (2003) 75


INTERSTELLAR MOLECULES
2
H2 AlF AlCl C2 CH CH+ CN CO CO+ CP CSi HCl KCl NH NO+ NS NaCl OH PN SO SO+ SiN SiO SiS CS HF SH FeO

3
C2H C2O C2S CH2

4
c-C3H l-C3H C3N C3O C3S CH2D+? HCCN HCNH+ HNCO HNCS HOCO+ H2CO H2CN H2CS H3O+ NH3 SiC3 HC2H

5
C5 C4H C4Si l-C3H2 c-C3H2 CH2CN CH4

6
C5H l-H2C4 C2H4 CH3CN CH3NC CH3OH CH3SH HC3NH+ HC2CHO NH2CHO HC4H

7
C6H CH2CHCN CH3C2H

8
CH2C3N HCOOCH3 CH2COOH? C7H CH2OHCHO HC6H

9 HC7N
CH3CH2CN (CH2)2O CH3CH2OH CH3C4H C8H

10
CH3C5N? (CH2)2CO NH2CH2COOH?

11 12 13 HC9N C6H6 HC11N

HC5N
HCOCH3 NH2CH3 c-C2H4O CH2CHOH

HCN
HCO HCO+ HCS+ HOC+ H2O H2S HNC HNO MgCN MgNC N2H+ N2O NaCN OCS SO2 c-SiC2 CO2 NH2 SiCN H3+ C3 AlNC

HC3N
HC2NC HCOOH H2CNH H2C2O H2NCN HNC3 SiH4 H2COH+

H-CC-CC-CN


1975:

2005:
SO2CN H SnBu3 H CN

Trolez & Guillemin, Angew. Chem. Int. Ed., 55 (2005) 2



1.064

1.216

1.372

1.279

1.168

0 kcal/mol
1.096

3 95 89 51

2 140 120 72

1.064

1.215

1.373

1.216

1.314

1.188

27 kcal/mol

110.8

1.418

1.215

1.379

1.168

128.2

49 kcal/mol
114.4
1 .3 3 8

121.7
1. 4 35 1. 1 64

119.1
1. 0 84

181.3

180.9

119.0
1. 42 9

4 1010

1.287
1.301

1.325

1 .2 12

3 1.43

5 81

1. 16 5

1.064

182.3 180.8

181.3

58 kcal/mol

51 kcal/mol

181.2

Predicted IR intensities higher than 50 km/mol
77 5 3 245 1 ) 102 10 30 80 90

6 3890 580 500 460

132.3
1. 00 7

176.8
1.297

179.3
1.304

1.204 1.265 172.4 179.7
1.286

61 kcal/mol
1.064 1.212 1.304 1.185 1.309 1.279

GRONOWSKI & KOLOS; Chem. Phys. Lett. 428 (2006) GRONOWSKI & KOLOS; J. Molec. Structure 834 (2007

66 kcal/mol


HC3N isomers

CCSD(T)/aug-cc-pVTZ
species Rel. energy (kcal/mol)

HCCCN

0 26.6 50.9 77.6 48.6

HCCNC

CCCNH

HCNCC

CC(H)CN


Can cyanovinylidyne be produced in space?


HC3N first detected in 1971. How is it formed? Original concept: HC3NH+ + e HC3N + H+ HC3NH+ + e H+ + HNC3

Indeed: HNC3 (along with HC2NC) detected in 1992, but: [HC3N]/[HNC3] 1000 !

Newer concept:

H2C2 + CN HC3N + H

(with the dissociative recombination of HC3NH+ still being recognized as the main source of cyanoacetylene isomers)


The dissociative recombination of HC3NH

+

HC3NH+ + e HC3NH H + an HC3N isomer

HC3NH+ creation :

HCCH+ + HNC HC3NH+ + H or the protonation of HC3N


OSAMURA et al. Ap. J. 519 (1999) 697


UCCSD(T) / TZVP

KOLOS, GRONOWSKI, & DOBROWOLSKI, A. & Ap., in preparation


Can cyanovinylidyne be detected?


6 x 10-11 > N > 2 x 10-1

1


Cyanovinylidene, rotational spectroscopy
CCSD(T) prediction:
Ao= 72 773 MHz Bo= 5 431 MHz Co= 5 054 MHz (scaling factor 1.010)

CCSD/cc-pVTZ electric dipole moment prediction: 2.77 D


Cyanovinylidene, vibrational spectroscopy
CCBD(T) anharmonic predictions
Mode / symmetry 1 / A' 2 / A' 3 / A' 4 / A' 5 / A' 6 / A' 7 / A' 8 / A" 9 / A" Wavenumber cm-1 2916.7 2257.2 1661.4 973.6 896.6 388.8 141.0 614.2 352.9 Intensity km/mol 53 22 79 2 2 2 23 20 0


INTERSTELLAR ANIONS (CC)nCCH- series:
n = 2: n = 1, 3: C6H
-

McCarthy et al., Ap. J. 652, L141 (2006)

C4H- and C8H-

Cernicharo et al., A.& Ap. 467, L37 (2007) BrÝnken et al., Ap. J. 664, L43 (2007) Gupta et al., Ap. J. 655, L57 (2007)

(CC)nCN- series:
n = 1: C3N
-

P. Thaddeus et al., Astrophys. J. 677, 1132 (2008).


Experimental studies on (CC)nCN
Wang et al. Chem. Phys. Lett. 237, 463 (1995)

-

mass spectrometry, soot/graphite arcing in N2 atmosphere CN-, C3N- , ........ C13N- (n = 0 ­ 6) matrix isolation of mass-selected ions
Grutter et al. J. Chem. Phys. 110, 1492 (1999)

electronic spectra n = 3 ­ 6 IR spectra n = 2 ­ 4

n=1?


(CWRD)


.0 16

Cyanoacetelene / Ar 14N +15N , CWRD treatment
Kolos, Gronowski, & Botschwina, 12 J. Chem. Phys. 128 (2008) 154305
isonitrile
.0 08

CO 15 15

?

imine 15 14

.0

H C N C C
14 isonitrile

15

14 14

?
.0 04

15

14

14 15 15 14 C3

HCNCC 15

0

1 90 0

1 94 0

1 98 0

2 02 0

2 06 0 W av e n u mb e r (c m -1 )

2 10 0

2 14 0

2 18 0

2 22 0


A single-nitrogen-containing non-hydride produced out of HC3N
. c wi -- C3N· P?BhoetsmhSonca. J. C .

no agreement with calculations
, M. Horn, J. FlÝgge & S. Seeger, Faraday Trans. 89, 2219 (1993)

-- C3N -- C3N

+

as above; tentative identification of a band at 2202 cm-1 (Ne) by

?M. Smith? A. ???

Gicklhorn, M. Lorenz, R. Kolos & V. E. Bondybey, J. Chem. Phys. 115, 7534 (2001)

­

a band at 2194 cm-1 (Ar) already atributed to C3N­ by

Z. Guennoun, I. Couturier-Tamburelli, N. PiÈtri & J.P. Aycard, Chem. Phys. Lett. 368, 574 (2003).


H-CC-CN

solid Kr


ArF laser-photolysed HC3N/Kr matrix

340

345

350

355

360

365

e m is s io n w a v e le n g th ( n m )

- long-lived - nitrogen present, no hydrogen


0,0
phosphorescence (a.u.)

193 nm laser-photolysed HC3N/Kr matrix

2173 1941 873 538

- a long-lived emission - nitrogen present, no hydrogen
29000 28000 27000 26000 25000 24000 23000 22000

w a v e n u m b e rs
M. Turowski, M. Gronowski, C. CrÈpin, S. Douin, S. BoyÈ-PÈronne, L. MonÈron , R. Kolos, J. Chem. Phys. 128 (2008) 164304


E

1

BD(T)/cc-pVTZ: C3N- singlet-tripllectrsepalratioescence e et onic um n n, ZPE-corrected: 3.61 eV Experiment: 0-0 phosph. band found at: 3.58 eV

IR absorption

E

o


Vibrational spectroscopy of CCCN
CCSD(T) IR absorption in Ar

-

Phosphoresc. in Ar

c

m-1

(km/mol)

14N-to-15N freq. shift

cm-1 ( % i n te n s i ty ) 2178.7 (52)

14N-to-15N freq. shift -22.6

cm-

1

14N-to-15N freq. shift

1

2182.3 (474.3)

-18.2 2173.0 (100) -17.2 -8.3

2173

-20

2 3

1940.9 (46) 866.7 (10.0)

-8.2 -10.1

1944.3 (14)

1942 873

-9 -10

4

532.8 (11)

-1.1

538

0

5

203.0 (14)

-13.3


Most intense IR absorptions of C5N- (freq. in cm-1)
Theory mode 1 2 3
a b

Experiment BD(T) 2207 2126 1925
b

CCSD(T) 2204 2129

a

Arb 2183.8 2111.3 1923.2

Nec

(1245 km/mol)

2115.9c

(580 km/mol)

1928
(253 km/mol)

Botschwina et al. (2008) Coupeaud, Turowski, Gronowski, PiÈtri, Kolos, Aycard;
J. Chem. Phys. 128 (2008) 154303

c

Grutter, Wyss, Maier, J. Chem. Phys. 110 (1999) 1492


OUTLOOK
1. The search for cyanovinylidene, in particular at UV/visible wavelengths. 2. Electronic spectroscopy of allowed (singlet-singlet) transitions for C3N- and C5N- anions. 3. Gas-phase spectroscopy of what has already been identified in frozen solids.


- M. Gronowski - M. Turowski - R. Kolos

}


IPC PAS, Warsaw, Poland

- C. CrÈpin - S. BoyÈ-PÈronne - S. Douin - P. Botschwina

}
}

} LPPM CNRS, Orsay France

IPC, GÆttingen, Germany

- M.-C. Gazeau - Y. BÈnilan - J.-C. Guillemin

LISA CNRS, CrÈteil France



ENSC, Rennes, France


, , , , , , , ...



Polish Ministry of Science & Higher Education grants: 3 T09A 077 27; 2004­2007 N 203 012 32/1550; 2007-2010

Polish-French PAN-CNRS project No. 19501; 2006­2008

Polish-French ,,POLONIUM" project No. 7064/R07/R08; 2007­2008