Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://zmmu.msu.ru/bats/biblio/ghaz_07.pdf
Äàòà èçìåíåíèÿ: Tue Aug 11 10:45:58 2009
Äàòà èíäåêñèðîâàíèÿ: Tue Oct 2 00:20:45 2012
Êîäèðîâêà:

Ïîèñêîâûå ñëîâà: m 2
Plecotus et al. 10 (2007): 3­13 __________________________________________________________________________________

599.426:575.82

(Myotis blythii) (Myotis myotis) (Chiroptera, Vespertilionidae):
.. , ..
, , , Myotis myotis, , M. blythii, (, ). , , , ­ , . -, - . : Myotis blythii oxygnathus, Myotis myotis myotis, , , , .

Myotis blythii (Tomes, 1857) Myotis myotis (Borkhausen, 1797) ­ , ( 1972; Arlettaz 1996; Arlettaz et al. 1991, 1993, 1997; Benda 1994; Benda, HorÀcek 1994-1995, 1995; 2004). , , . . , 1 (Ruedi, Mayer 2001). (Arlettaz et al. 1997). ­ , , , . . , . ­ -


4 , , (Freeman 1998). . , (), . . , 2­3 , (Benda 1994). , M. myotis M. blythii. , , . . , . (Lynch 1990). ( ) : D = VB / (VW · t), VB ­ , VW ­ t ­ . , , . D 10­4 10­2. , (Turelli et al. 1988; Lynch 1990). D > 10­2, , . D < 10­4, , .


. M. blythii (, 47 ) (22 ): 28 ( ) 41 ( ). M. myotis (4 , 20 ), 13 11 . , , M. b. oxygnathus


Plecotus et al. 10 (2007)

5

(Monticelli, 1885), ­ M. m. myotis (Borkhausen, 1797). 93 : 69 M. blythii 24 M. myotis. , . 17 14 (. 1). (SigÈ 1968). . VW VB, , (, 1982; Lynch 1990) VW = MSR VB = (1 /n0) (MSF ­ MSR), VW ­ , VB ­ , MSF MSR ­ , n0 ­ , . ,
MS F = N1 N 2 (M 1 - M 2 )2 , N1 + N 2

MS R =

2 (N1 - 1 )S12 + (N 2 - 1 )S 2 , N1 + N 2 - 2

n0 = N 1 + N 2 -

2 N12 + N 2 , N1 + N 2

N1 N2 ­ ; M1, M2 S1, S2 ­ (, 1982; Lynch 1990). Q = (S / M)·100%. M. myotis (HorÀcek 1985). 4.4 ; . t = 2·(106 / 4.4) 4.44·105 . (RS). p Z, K .


. 2. 10­5 ­ 10­7, ( ­ ) , . ­ (. 2). , -


6 .
1. . Table 1. A list of jaw and lower tooth measurements. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 / Measurements / length of mandible / lower toothrow / width across angular processes / width across condyloid processes / width across coronoid processes / angular-condyloid distance / angular-coronoid distance / condyloid-coronoid distance / hight of coronoid process / C-angular distance / C-condyloid distance / C-coronoid distance 4 / width across P4 M3 / width across M3 / length of C / width of C P2 / length of P2 P2 / width of P2 P3 / length of P3 P3 / width of P3 P4 / length of P4 P4 / width of P4 M1 / length of M1 M1 / trigonid width of M1 M1 / talonid width of M1 M2 / length of M2 M2 / trigonid width of M2 M2 / talonid width of M2 M3 / length of M3 M3 / trigonid width of M3 M3 / talonid width of M3 / M3 / talonid-trigonid ratio of M3


Plecotus et al. 10 (2007)

7

2. M. myotis M. blythii. . 1. Table 2. Statistical estimates for variation of mandibular characters in M. myotis and M. blythii. Measurement numbers are as in Table 1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 V V
-3

B

W -4

D 1.60·10 2.19·10-5 3.16·10-6 3.83·10-6 3.21·10-6 7.39·10-6 6.40·10-6 5.26·10-6 2.76·10-5 1.07·10-5 1.56·10-5 1.14·10-5 2.95·10-7 ­6.94·10-8 1.66·10-6 5.05·10-6 8.00·10-6 8.88·10-6 1.90·10-6 1.32·10-5 1.15·10-5 1.21·10-5 7.82·10-6 5.05·10-6 6.31·10-6 1.53·10-5 5.49·10-6 8.13·10-6 7.15·10-6 7.67·10-6 ­4.59·10-8 4.11·10-6
-5

Q, % M. blythii 2.75 2.80 5.61 2.80 2.92 4.54 4.84 5.05 2.48 3.33 2.49 3.61 6.72 5.67 8.43 4.66 6.51 6.74 8.37 6.02 6.12 6.42 3.89 7.61 5.40 3.54 6.71 4.66 3.41 5.69 9.60 8.73 M. myotis 2.70 2.69 7.70 6.42 5.10 4.06 4.05 3.89 3.29 2.92 3.07 4.33 10.22 11.61 8.29 4.00 5.91 5.41 8.56 6.94 4.12 4.81 3.29 7.36 6.30 2.81 8.15 6.11 4.89 7.63 8.96 9.88

1.06·10 1.42·10-3 1.21·10-3 8.03·10-3 4.63·10-3 1.17·10-3 1.17·10-3 9.25·10-4 1.84·10-3 9.30·10-4 1.10·10-3 1.63·10-3 1.85·10-4 ­4.51·10-5 1.07·10-3 8.74·10-4 2.82·10-3 3.21·10-3 1.20·10-3 4.46·10-3 3.60·10-3 3.79·10-3 9.51·10-4 2.38·10-3 1.65·10-3 1.48·10-3 2.29·10-3 1.74·10-3 9.07·10-4 2.51·10-3 ­3.49·10-5 2.87·10-3

1.46·10 1.42·10-4 8.42·10-4 4.61·10-4 3.18·10-4 3.49·10-4 4.01·10-4 3.87·10-4 1.46·10-4 1.91·10-4 1.56·10-4 3.14·10-4 1.38·10-3 1.43·10-3 1.42·10-3 3.81·10-4 7.75·10-4 7.94·10-4 1.39·10-3 7.42·10-4 6.87·10-4 6.92·10-4 2.68·10-4 1.04·10-3 5.74·10-4 2.12·10-4 9.19·10-4 4.72·10-4 2.79·10-4 7.20·10-4 1.67·10-3 1.54·10-3


8 4 ( 13 . 1 2, 10­7). ( 14 31 . 2) . , , MSR , MSF ( , ). , ; -, . / 3 ( 32), , , 10­6.

. 1. (D) M. myotis M. blythii. ­ , ­ . . 1. Fig. 1. Dependence between Lynch's statistics (D) and within-group variance for mandibular characters in M. myotis and M. blythii. Triangles indicate dental characters, and squares indicate jaw characters. Measurement numbers are as in Table 1.

D VW (. 1; RS = ­0.71, Z = ­5.48; K = 32; p<0.0001). D VB (. 2; RS = 0.51, Z = 3.29; K = 32; p<0.003).


Plecotus et al. 10 (2007)

9

. , VB, VW. , . ( 26) VB VW, ( VB VW). VB VW (RS = 0.13, Z = 0.72; K = 32; p<0.479).

. 2. (D) M. myotis M. blythii. . 1. Fig. 2. Dependence between Lynch's statistics (D) and between-group variance for mandibular characters in M. myotis and M. blythii. The notation is as in Fig. 1.

- (. 3). VB VW, VB / VW . ( : 13, 14, 15, 19, 31) , , VW VB. . , , .


10

. 3. - M. myotis M. blythii. . ­ . 1. Fig. 3. Dependence between within- and between-group variance for mandibular characters in M. myotis and M. blythii. A group of rudimentary structures is outlined with dotted line. The notation is as in Fig. 1.

D ( M. blythii RS = ­0.53, Z = ­3.46; K = 32; p<0.002; M. myotis RS = ­0.76, Z = ­6.42; K = 32; p<0.0001).


, , . , , , . , , (Popov 2004). (Lynch 1990). -


Plecotus et al. 10 (2007)

11

, (Gingerich 1993). , , . . , .. (HorÀcek 1985). , , . . , . , (M. bechsteinii) 2­3 (Kerth et al. 2000), (M. lucifugus) ­ 4.76 (Humphrey, Cope 1976, . Heppell et al. 2000). , , 10 , . , , . , . 3.5 ( 1980), . , , . - , ( ) (Berthier et al. 2006). , , , . , , , ­ .


- . . .. .. , .. -


12
. . , . , . , . , . , . .. , .





., . 1982. : . . . ., , 488 . .. 2004. , Myotis myotis, , Myotis blythii. ­ . 38(2): 27­32. .. 1980. . ­ .: (Chiroptera). ., : 154­179. .. 1972. : , , . ­ Acta theriol. 17(28): 355­380. Arlettaz R. 1996. Feeding behaviour and foraging strategy of free-living mouse-eared bats, Myotis myotis and Myotis blythii. ­ Animal Behaviour 51: 1­11. Arlettaz R., Ruedi M., Hausser J. 1991. Field morphological identification of Myotis myotis and Myotis blythi (Chiroptera, Vespertilionidae): a multivariate approach. ­ Myotis 29: 7­16. Arlettaz R., Ruedi M., Hausser J. 1993. Ecologie trophique de deux espÕces jumelles et sympatriques de chauve-souris: Myotis myotis et Myotis blythii (Chiroptera, Vespertilionidae). Premiers resultats. ­ Mammalia 57(4): 519­531. Arlettaz R. Ruedi M., Ibaßez C., Palmeirim J., Hausser J. 1997. A new perspective on the zoogeography of the sibling mouse-eared bat species Myotis myotis and Myotis blythii: morphological, genetical and ecological evidence. ­ J. Zool. Lond. 242(1): 45­62. Benda P. 1994. Biometrics of Myotis myotis and Myotis blythi: age variation and sexual dimorphism. ­ Folia Zoologica 43(4): 297­306. Benda P., HorÀcek I. 1994-1995. Biometrics of Myotis myotis and Myotis blythi. ­ Myotis 32-33: 45­55. Benda P., HorÀcek I. 1995. Geographic variation in three species of Myotis (Mammalia: Chiroptera) in South of the Western Palearctics. ­ Acta Soc. Zool. Bohemicae 59 (1-2): 17­39. Berthier P., Excoffier L., Ruedi M. 2006. Recurrent replacement of mtDNA and cryptic hybridization between two sibling bat species Myotis myotis and Myotis blythii. ­ Proceedings of the Royal Society B 273: 3101­3109. Freeman P.W. 1998. Form, function, and evolution in skulls and teeth of bats. ­ In: Kunz T.H., Racey P.A., (eds.): Bat Biology and Conservation. Washington, Smithsonian Institution Press: 140­156. Gingerich P.D. 1993. Quantification and comparison of evolutionary rates. ­ American Journal of Science 293-A: 453­478. Heppell S.S., Caswell H., Crowder L.B. 2000. Life histories and elasticity patterns: perturbation analysis for species with minimal demographic data. ­ Ecology 81(3): 654­665. HorÀcek I. 1985. Population ecology of Myotis myotis in central Bohemia. ­ Acta Universitatis Carolinae ­ Biologica 1981 8: 161­267. Kerth G., Mayer F., KÆnig B. 2000. Mitochondrial DNA (mtDNA) reveals that female Bechstein's bats live in closed societies. ­ Molecular Ecology 9: 793­800. Lynch M. 1990. The rate of morphological evolution in mammals from the standpoint of the neutral expectation. ­ Am. Nat. 136(6): 727­741.


Plecotus et al. 10 (2007)

13

Popov V.V. 2004. Pliocene small mammals (Mammalia, Lipotyphla, Chiroptera, Lagomorpha, Rodentia) from Muselievo (North Bulgaria). ­ Geodiversitas 26(3): 403­491. Ruedi M., Mayer F. 2001. Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. ­ Molecular Phylogenetics and Evolution 21(3): 436­448. SigÈ B. 1968. Les chiroptÕres du MiocÕne infÈrieur de Bouzigues. I ètude systÈmatique. ­ PalÔovertebrata 1(3): 65­133. Turelli M., Gillespie J. H., Lande R. 1988. Rate tests for selection on quantitative characters during macroevolution and microevolution. ­ Evolution 42(5): 1085­1089.

S

UMMARY

Ghazali M.A., Dzeverin I.I. 2007. Mechanisms of divergence between the lesser (Myotis blythii) and greater (Myotis myotis) mouse-eared bats (Chiroptera, Vespertiliuonidae): assessment by mandibular characters. ­ Plecotus et al. 10: 3­13. The extent of divergence between sibling species of big mouse-eared bats M. blythii and Myotis myotis from the East European populations (the Carpathians, Crimea) has been determined by Lynch's method (1990). Right side mandibular measurements (Table 1) were taken from 69 M. blythii and 24 M. myotis, and then log-transformed prior to calculate Linch's coefficient D = VB / (VW ·t), where VB is between-group variance, VW is withingroup variance, and t is a double number of generations that separate the species from their common ancestor. On the base of demographic data (HorÀcek 1985) we accepted that longevity of generation in M. myotis was 4.4 year. Statistical estimates of variation in mandibular characters and real differences between species (Table 2) proved to be much lesser than the theoretical estimations based on the assumption, that the divergence of these two species has been caused exclusively by random processes (mutation, genetic drift or randomly varying selection). Apparently, the stabilizing selection was the principal factor that has been maintaining the odontometric characters of the studied Myotis species for a long time. Key words: Myotis blythii oxygnathus, Myotis myotis myotis, mandible, teeth, divergence, stabilizing selection. : (mariaghazali@yahoo.com) (igor_dzeverin@yahoo.com) . .. . , 15, 01601, Authors' address: Maria A. GHAZALI (mariaghazali@yahoo.com) Igor I. DZEVERIN (igor_dzeverin@yahoo.com) Schmalhausen Institute of Zoology, Nat. Acad. Sci. Ukraine Bogdan Khmelnytsky Str. 15, Kiev 01601, Ukraine