Документ взят из кэша поисковой машины. Адрес оригинального документа : http://xmm.vilspa.esa.es/sas/8.0.0/doc/eposcorr/node4.html
Дата изменения: Wed Jul 2 03:02:18 2008
Дата индексирования: Fri Sep 5 19:36:55 2008
Кодировка:

Поисковые слова: arp 220
Statistical method XMM-Newton SAS Home Page
XMM-Newton Science Analysis System


eposcorr (eposcorr-3.12.1) [xmmsas_20080701_1801-8.0.0]

Description Description The errors in the Home Index

Meta Index / Home Page / Description

Statistical method

The statistic for optimizing the match between optical and X-ray sources is:
\begin{displaymath}
L = \sum_{i=1}^{n_x} \sum_{j=1}^{n_o}
\exp( -\frac{1}{2} (\frac{r_{ij}}{\sigma_{ij}} )^2 ),
\end{displaymath} (1)

with $r_{ij}$ the distance between an X-ray (i) and an optical source (j), $\sigma_{ij}$ the associated error and $n_x$ resp. $n_o$ the number of X-ray sources and optical sources in the list. In the eposcorr task only those optical sources are considered which are within $5\sigma$ of an X-ray source (for a given position offset).

In the following we will assume that the errors in the RA and DEC are equal and uncorrelated and follow a gaussian distribution, we can then write $\sigma_x = \sigma_y = \sigma$[*]. For the expectation value of $L$ for a given X-ray source we get:

\begin{displaymath}
L = \frac{1}{2\pi \sigma^2}
\int dx \int dy \exp( -\frac{1}...
...\int dr\ 2\pi r\ \exp( - \frac{r^2}{\sigma^2} ) = \frac{1}{2}.
\end{displaymath} (2)

The associated variance in $L$ is:
\begin{displaymath}
<L^2>-<L>^2 =
\int dr\ 2\pi r\ \exp( - \frac{1}{2}\frac{r^2}...
...\frac{1}{2}\Bigr)^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}
\end{displaymath} (3)

Of course, in practice there will be chance coincidences. For chance coincidences the chance that an optical counter part will be within a distance $r$ from the source is $\pi r^2/ \pi(5\sigma)^2$ (i.e. within an error circle of $5\sigma$). This gives for the expected value $L$ for a chance coincidence:

\begin{displaymath}
L = \int_0^{5\sigma} dr \frac{2\pi r}{\pi 25 \sigma^2} \exp(...
...{25} \Bigl(1 - \exp(-\frac{25}{2})\Bigr) \simeq
\frac{2}{25}.
\end{displaymath} (4)

And for the variance in $L$:
\begin{displaymath}
<L^2>-<L>^2 = \int_0^{5\sigma} dr \frac{2\pi r}{\pi 25 \sigm...
...
\frac{1}{25} - \Bigl(\frac{2}{25}\Bigr)^2 = \frac{21}{25^2} .
\end{displaymath} (5)

The number of chance coincidences can be estimated using poisson statistics with a poisson parameter of $\mu = 25 \pi \sigma^2 \lambda$, with $\lambda$ the average number of optical sources per unit area. The expected number of sources is thus $\sum_{i=1}^{n_x} \mu_i$ (where the subsript $i$ denotes values for each X-ray source, thus allowing for fluctuations in the number of optical sources per area). The expected value for $L$ is:

\begin{displaymath}
L = \sum_{i=1}^{n_x}
\mu_i \int_{0}^{5\sigma_i} dr \ \frac{...
...\frac{r^2}{\sigma^2} ) =
\frac{2}{25} \sum_{i=1}^{n_x} \mu_i .
\end{displaymath} (6)

How many counterparts do we need to discriminate between chance coincidences or real counter parts? This question is not easy to answer, as eposcorr optimizes $L$ and also for the number of counter parts. This means that poissonian statistics may bnot be valid. To get at least an approximate answer, we equate:

\begin{displaymath}
(L_{exp} - 2\sigma_L)_{gaussian} = (L_{exp} + 2\sigma_L)_{poissonian},
\end{displaymath} (7)

or,
\begin{displaymath}
\frac{N}{2} - 2\sqrt{\frac{N}{12}} = \frac{2N}{25} + 2\sqrt{\frac{2N}{25^2}}.
\end{displaymath} (8)

The solution of this equation is $N = 5.1$. I therefore propose to use this number plus the number of degrees of freedom as the minimum threshold for accepting a result of eposcorr. This means that when offsets and in RA and DEC are corrected for the minimum number of optical counter parts should be 7, including a rotational correction this will be 8. This number will be contained in the keyword NMATCHES.


Description Description The errors in the Home Index

XMM-Newton SOC/SSC -- 2008-07-01