Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.sai.msu.su/gcvs/digit/mdv/MDV1.pdf
Äàòà èçìåíåíèÿ: Tue Dec 6 17:53:44 2011
Äàòà èíäåêñèðîâàíèÿ: Tue Feb 5 16:10:48 2013
Êîäèðîâêà:
ACTA ASTRONOMICA Vol. 58 (2008) pp. 279­292

New Variable Stars on Digitized Moscow Collection Plates. Field 66 Ophiuchi (Northern Half) D. M. K o l e s n i k o v a 1 , L. A. S a t 2 , K. V. S o k o l o v s k y S. V. A n t i p i n 2,1 and N. N. S a m u s 1,2
1

2, 3, 4

,

4

Institute of Astronomy, Russian Academy of Sciences, 48, Pyatnitskaya Str., Moscow 119017, Russia 2 Sternberg Astronomical Institute, Moscow University, 13, University Ave., Moscow 119992, Russia e-mail: lsat@inasan.ru, ksokolov@mpifr-bonn.mpg.de, antipin@sai.msu.ru 3 Astro Space Center of Lebedev Physical Institute, Profsoyuznaya 84/32, 117997 Moscow, Russia Currently at: Max Planck Institute for Radio Astronomy, Auf dem HÝgel 69, 53121 Bonn, Germany Received June 9, 2008

ABSTRACT We initiated digitization of the Moscow collection of astronomical plates using flatbed scanners. Techniques of photographic photometry of the digital images were applied, enabling an effective search for new variable stars. Our search for new variables a mong 140 000 stars in the 10 â 5 northern half of the field centered at 66 Oph, photographed wi th the Sternberg Institute's 40-cm astrograph in 1976­1995, gave 274 new discoveries, among th em: 2 probable Population II Cepheids, 81 eclipsing variables, 5 high-amplitude Sct stars (HADSs), 82 RR Lyr stars, 62 red irregular variables and 41 red semiregular stars, 1 slow irregular var iable not red in color. Ephemerides were determined for periodic variable stars. We detected about 3 0 variability suspects for follow-up CCD observations, confirmed 11 stars from the New Catalog of Susp ected Variable Stars, and derived new ephemerides for 2 stars already contained in the General Cat alog of Variable Stars. Key words: Stars: variables: general ­ Surveys

1. Introduction Regular photographic observations of the sky for variable- star studies started in Moscow in 1895. Since then, several different telescopes were used to take direct sky plates for astrometry and for astrophysics. The Moscow p late archive now contains more than 60 000 direct photographs and objective- prism plates taken in Moscow, at other sites in Russia, and at the Sternberg Institute's observatory in Crimea, Ukraine.


280

A. A.

The most important part of the Moscow plate collection are direct sky photographs acquired in 1948­1996 with a 40-cm astrograph. Thi s instrument was ordered by Prof. C. Hoffmeister for Sonneberg Observatory ( Germany) and first installed there in 1938. 1658 plates from this telescope, taken in 1938­1945, are kept in Sonneberg (the GA series of the Sonneberg plate colle ction). In 1945, the telescope was taken to the Soviet Union as a part of the World War II reparations. It was initially installed in Simeiz (Crimea), then brought to Kuchino near Moscow, and in 1958 became the first instrument of the Crimean Laborat ory of the Sternberg Institute in Nauchny, Crimea. The total number of plates taken with the 40-cm astrograph after 1948 is about 22 500. A single attempt of direc t comparison between Sonneberg and Crimean plates of the 40-cm astrograph at a bli nk comparator was undertaken in 1980s (Samus 1983). The field of view of the 40-cm astrograph is 10 â 10 , on 30 â 30 cm plates (the focal length is 1600 mm). The typical exposure time for the variable-star fields was 45 minutes. The limiting magnitude of good-quality plates is about 17.5 ( B ). The instrument was mainly used for variable-star studies, i ncluding search for new variables. For some fields, rich series of plates exist (up to 500 plates). For variable stars that can be found in several fields, sometimes as many as 1000 photographic plates are available. The list of fields, with numbers of plates obtained, can be found in Internet (http://cataclysm.sai.msu.ru/www/plates/40.dat). Plates are kept in good conditions, most plates, initially of excellent quality, are still perf ect . The Moscow plate collection, like other major astronomical plate collections of the world, has been actively used for scientific research f or decades. It still contains a large amount of significant information never use d by researchers, as indicated by discoveries of interesting events missed at the time of observation, like the discovery of Nova Aql 1985 (V1680 Aql) made 17 years later (Antipin et al . 2002) . Guaranteed conservation of the vast amounts of information contained in the plate collection and its use by means of modern methods of image processing require digitization of plate archives. This work commenced i n Moscow, in 2004, after the purchase of two Creo EverSmart Supreme II scanners . The initial digitization plans, along with a more detailed description of the Moscow plate archive from different instruments, were presented in Samus et al. (2006). Most plates from the 40-cm astrograph were taken for variabl e-star studies. It was natural to search for new variable stars using digital im ages obtained in the process of scanning the Moscow collection plates. In our first experiments, we discovered 38 new variable objects (mostly variable stars, but also extragalactic objects) on test partial scans (several square degrees) of s tar fields photographed with the astrograph (Sokolovsky 2006, Manannikov et al. 2006, Kolesnikova et al. 2007a,b). We introduced preliminary designations for vari able stars discovered in this program with the prefix MDV (Moscow Digital Variable).


Vol. 58

281

There were several other attempts to search for variable obj ects on digitized photographic plates. Among them are: a search for QSOs on the base of optical variability and zero proper motion criteria (Scholz et al. 1997, Brunzendorf and Meusinger 2001), a search for long-term variability using S onneberg archival patrol plates (Vogt et al. 2004), a search for novae in M31 using Tautenburg Schmidt pl a t e s ( H e nz e e t al . 2008) . In this paper, we announce the discovery and study of 274 new MDVs in the northern half of the field 66 Oph of the 40-cm astrograph. 2. Scanning and Reductions The field 66 Oph (18 h 00.m 3, +4 22 , J2000.0) was photographed with the 40cm astrograph in 1976­1995, a total of 254 plates were acquir ed. All these plates were scanned with a resolution of 2540 dpi (1. 2 per pixel), providing 14 bit per pixel per color. Color images produced by th e scanner were saved in the TIFF (RGB) format using the scanner software operatin g in the Mac OS X environment. In our further reductions, we made use only of t he green channel of each image, selected empirically. The files were then moved to a Linux server equipped with a 5 TB RAID array for storage and subsequent analysis. The images were converted to the FITS format using custom-written soft ware . In this paper, we present our analysis of the northern half of the field ( 10 â 5 ) containing about 140 000 stars within our detection limits (see below). The response to a point source of a given brightness on a large -scale photographic plate is a subject to strong spatial variations. Obv ious reasons for that include abberations in the optics of the astrograph (coma, v ignetting, etc.), inhomogeneity in photographic emulsion coating, and differences in airmass for stars in different parts of a plate. All these factors are expected to be relatively weak functions of coordinates on a plate. To overcome these complexities, the 10 â 5 field was subdivided into 72 nearly-square subfields. The influence of systematic factors is assumed to be the same for all stars in a given subfie ld. Each subfield was analyzed separately using VA S T software (Sokolovsky and Lebedev 2005), the results were combined at the final stage. For star detection and aperture photometry, VA S T uses the well-known S E X T R AC T O R code (Bertin and Arnouts 1996). All objects identified by S E X T R AC T O R as blended or non-point sources were excluded from further c onsideration because such sources produce many false detections in a variab ility search. Aperture photometry was performed with a circular aperture. The aper ture diameter was automatically selected for each image to compensate for seeing variations. This method was preferred against the variable elliptical apert ure photometry (parameter MAG_AUTO) enabled by default in S E X T R AC T O R, because the addition of extra


ftp://scan.sai.msu.ru/pub/software/tiff2fits http://saistud.sai.msu.ru/vast


282

A. A.

degrees of freedom (the aperture shape and size determined f or each star separately) deteriorates the quality of measurements of faint stars. T H E S E X T R AC T O R parameters and the aperture diameter were selected to optimize me asurements of stars in the 13.5­16.5 mag in (B) range. This magnitude range was preferred because brighter variable stars in this particular field have mostly been already discovered ´ in the ASAS-3 (Pojmanski 2002) and ROTSE-I/NSVS (Wozniak et al. 2004) CCD ´ surveys, both covering the near-equatorial field of our plat es. The VA S T code automatically matches stars detected on an image by S E X T R AC T O R with stars detected on the reference image using the techniq ue of the search for similar triangles. One of the best photographs wa s chosen as a reference image. Magnitudes of stars were measured by S E X T R AC T O R in an instrumental scale with respect of the background level of the current ima ge. All measured magnitudes were converted to the instrumental system of the ref erence image by approximating the relation between magnitudes on the current and reference images with a parabolic function. All stars matched on the images were used to establish this relation. Visual inspection confirms that this approxi mation works well in the required range of magnitudes. The resulting light curves are characterized by an rms error of 0.05­0.15 mag for stars in the 13.5­16.5 mag range. 3. The Method of the Search for Variability and Its Limitations A light curve of a variable star is, obviously, characterize d by a larger scatter of magnitude measurements compared to non-variable stars m easured on the same series of images. However, the precision of magnitude measurements for a particular star is a function not only of its brightness but of ma ny different factors, like the presence of close companions and image defects. That is why a variability search based solely on magnitude scatter as a function of a star's magnitude is inefficient, at least for noisy photographic data, and will result either in dramatic incompleteness or in a very large number of false "positive" detections. To deal with the problem, we extensively use time information contained in our data, as described below. The search for variability in a sample of light curves was con ducted in several steps. First, the relation rms deviation ­ instrumental magnitude was constructed for each subfield. Stars with rms deviations in excess of the average for their magnitudes were selected using a soft criterion. The second ste p was to study time series for each selected star for periodicities using a numb er of complementary algorithms: ­ Our own version of the Phase Dispersion Minimization algorithm, developed by one of the authors (D.M.K.). ­ An Analysis of Variance (ANOVA, Schwarzenberg-Czerny 198 9, 1996) technique. We made use of the C code from D E B I L package (Devor 2005) implementing this algorithm.


Vol. 58

283

­ Box Least Squares algorithm (KovÀcs et al. 2002) originally developed for search for transiting extrasolar planets. This algorithm h as proven to be useful in identifying Algol-type variables among photographic light curves. The listed algorithms provide means to judge on the statistical significance of detected periodicities. The period significance cut-offs for candidate selection were chosen for each algorithm using a number of previously found variable stars. Along with the periodicity search approach, we used the vari ability detection algorithm proposed by Welch and Stetson (1993) to search for slow (compared to typical time sampling of our photographic light curves) non -periodic brightness variations which are often found for post-AGB and AGB stars a nd for active galactic nuclei. This technique was used mostly as a complementary one but not as a main candidate-selection method. Surprisingly, we found that slow irregular variables could often be detected by spurious periodicities found by period-search techniques even if the light variations are non-periodic. These false periods are usually found around integer multiples of 1 day and they correspond t o beat frequencies between the typical light-curve sampling frequency and the characteristic frequency of real light variations. In such cases, visual inspection of a light curve readily reveals the true character of variability.

Fig. 1. The results of the search for variable stars in one of t he 72 subfields in the northern half of the 66 Oph field. Circled are the eight detected objects: No. 1 is V1077 Oph, No. 2, V2328 Oph, No. 3, MDV 92, No. 4, MDV 91, No. 5, MDV 72, No. 6, V940 Oph, No. 7, MDV 83, No. 8 is one of suspected variables for our future CCD studies.


284

A. A.

Fig. 1 shows the results of our variable-star search in a smal l subfield that gave 8 detections of variable stars (some of them known). Magnitudes of all detected variable stars were then convert ed to the B scale using a number of USNO-A2.0 stars (Monet et al. 1998). The relation between the instrumental magnitudes and the USNO-A2.0 B magnitudes for each subfield was, again, approximated by a parabolic function. This step was performed after the selection of variable-star candidates since possible errors on this stage could introduce additional noise into light curves. A sample calibration diagram for a subfield is displayed in Fig. 2.
17

16.5

16 USNO-A2.0 B magnitude

15.5

15

14.5

14

13.5

13 -15.6

-15.4

-15.2

-15

-14.8

-14.6

-14.4

-14.2

-14

-13.8

-13.6

-13.4

Instrumental magnitude

Fig. 2. A sample calibration curve for one of subfields. The da shed curve is the adopted magnitude calibration.

Having selected the candidates, we then studied their brightness variations using the W I N E F K software written by Dr. V.P. Goranskij and kindly made available to us. This software permits to view light curves, to look for periodicities using several well-known algorithms (Deeming, Lafler­Kinman, etc.), to search for second periodicities. Our final decision if an automatically selected candidate was a real variable star was made only after a visual inspection of its light curve. The described variability search technique has a number of l imitations. First, it is not particularly sensitive to irregular light variati ons on time scales shorter than the light curve sampling time. Objects showing this type of variability can be detected solely on the base of large magnitude rms deviations if a careful inspection of images does not reveal any reason why this particular star was measured with a much worse precision than other stars. Without an aid o f the period search


Vol. 58

285

technique, this results in a much worse detection probabili ty for such variations. No such objects were found in the field described in this paper. However, T Tau variables found during a special search in the field of V451 Ta u show exactly this behavior. The results of the variability search in the V451 Tau field will be discussed elsewhere. The second limitation results from the properties of the VA S T software. This software constructs light curves only for those stars detec ted on the reference image for which the total number of detections exceeds 30. This approach effectively avoids many false star detections (because of plate flaws, dust, and large grains of the emulsion) but remains sensitive even to the faintest stars visible on the plates. However, this makes us completely insensitive to any transient phenomena (Novae, dwarf nova outbursts, etc.) that can be present on the plates . 4. Results

As expected, we detected rather many known variable stars. T hey were analyzed along with the new variables (see below), but this paper deals with only those of them for which our results significantly correct or append published information. We have discovered a total of 274 new variable stars (MDV 39 ­ MDV 312). They are presented in Table 1. Among these stars, there are 2 p robable Population II Cepheids, 81 eclipsing variables, 5 high-amplitude Sct stars (HADSs), 82 RR Lyr stars, 62 red irregular variables and 41 red semireg ular stars, 1 slow irregular variable not red in color (MDV 80). Our phased photographic light curves of the new periodic var iable stars (with the exception of some of the red semiregular variables) can b e found at the web site of our team (http://www.sai.msu.su/gcvs/digit/mdv/). Fig. 3 shows, as an example, the first eight phased light curves. Fig. 4 is the light curve of MDV 80. The observations of all the new variable stars are also avail able at our web site (http://www.sai.msu.su/gcvs/digit/mdv/data/).
B
15.6 15.9 16.2 16.5 0 0.5 1

MDV40 RRAB 0.759705

B
14.6 14.8 15 15.2 15.4

MDV41 RRAB 0.734964

B
15.4 15.6 15.8 16

MDV43 EB 0.528001

B
15.4 15.6 15.8

MDV45 EW 0.381209

0

0.5

1

0

0.5

1

0

0.5

1

B
15.6 15.8 16 16.2 16.4

MDV46 RRAB 0.404791

B
15.6 15.8 16 16.2

MDV47 EW 0.383012

B
15 15.5 16

MDV49 RRAB 0.612771

15.4 15.6 15.8 16 16.2 0 0.5 1 0 0.5 1

B

MDV51 RRAB 0.676667

0

0.5

1

0

0.5

1

Fig. 3. Sample phased light curves for the new regular variab le stars. Only the first 8 light curves are shown.


286
Table1
New Moscow Digital Variables

A. A.

MDV 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Coord. (J2000)
h 40m 07. 8 s h 40m 29. 7 s h 40m 35. 5 s h 41m 18. 8 s h 42m 13. 9 s h 42m 21. 2 s h 42m 44. 8 s h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h

GSC / USNO-A2.0 A A A G A G A A A G A G A A G A A A G A G A A A A A G A A A A G G A A A A G A A A G A A A A A A A A A G G A G A A G A A A A A A A A A A 20 20 20 SC 20 SC 20 20 20 SC 20 SC 20 20 SC 20 20 20 SC 20 SC 20 20 20 20 20 SC 20 20 20 20 SC SC 20 20 20 20 SC 20 20 20 SC 20 20 20 20 20 20 20 20 20 SC SC 20 SC 20 20 SC 20 20 20 20 20 20 20 20 20 20 900-10266740 900-10281306 900-10285157 00423-01670 900-10351850 00423-00845 900-10372558 900-10385352 900-10416750 00424-00974 975-09664523 00424-00684 900-10497630 900-10509345 00428-00825 975-09739370 900-10583670 900-10584141 00428-01925 900-10597576 00428-00148 975-09759232 975-09761937 900-10611848 975-09777699 900-10627092 00428-00414 900-10653069 900-10656595 900-10697991 975-09829154 00428-01901 00994-01460 975-09851918 975-09853705 900-10744203 975-09859679 00424-00123 900-10756126 975-09867207 900-10760510 00424-01416 975-09878755 900-10781877 900-10786611 975-09887194 900-10800230 900-10808592 900-10763277 900-10812302 900-10823986 00429-02191 00429-02060 900-10847301 00429-01936 975-09945912 900-10874520 00425-01277 900-10884039 975-09978626 975-09980031 900-10928663 900-10939727 975-09994108 900-10948278 975-10003602 900-10962191 975-10012892

t ype LB RRA B RRA B SR: EB SRB EW RRA B EW LB RRA B LB RRA B SRB EW EW RRA B EW SR: EA EB RRC RRA B LB RRC: RRA B SRB: RRA B EW RRC SRB LB RRA B: RRC H AD S LB RRA B LB RRC EW EA L RRC RRC EW EW RRC SR: RRA B RRC EW EW LB RRC L B: RRA B RRA B CWB: RRA B RRC EB RRC EW RRA B RRA B: EW SR CWA:

max-min-min II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 5 4 5 5 4 5 5 5 5 4 4 5 5 5 4 6 5 4 6 4 5 4 5 4 5 5 4 5 5 5 5 5 4 5 5 4 5 5 5 5 4 5 6 5 5 5 5 6 5 4 4 5 5 5 5 5 5 5 5 4 4 5 5 5 5 5 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 6 6 1 6 8 4 7 7 7 8 0 6 4 2 9 1 7 9 0 5 8 8 4 7 6 1 1 9 4 8 0 2 9 3 5 2 1 1 0 0 0 4 0 4 7 9 8 1 7 4 2 2 5 0 2 4 1 7 9 9 2 3 4 9 7 7 4 -16 -16 5-1 -15 -16 -15 -15 -16 -16 -16 -16 5-1 -16 -16 -15 -15 -17 5-1 -15 -16 5-1 -16 -16 -16 -15 -16 5-1 5-1 -16 -16 -16 -15 5-1 5-1 -15 -16 -15 -16 -15 -15 -15 -14 -15 -16 5-1 -16 -16 -16 -16 -16 -14 -14 -16 -15 -15 -16 -16 -15 -16 -16 5-1 5-1 -15 -16 -16 5-1 -16 -15 .6 .3 5. .6 .0 .1 .7 .3 .2 .8 .0 4. .2 .1 .8 .4 .0 6. .2 .5 5. .2 .0 .0 .2 .4 5. 4. .2 .0 .2 .7 5. 5. .9 .1 .6 .1 .7 .6 .6 .5 .8 .4 5. .0 .2 .4 .6 .2 .9 .6 .0 .9 .4 .1 .2 .6 .7 .4 5. 4. .9 .3 .2 6. .4 .8 5 3 -15.85 5 5-15.7 5 -16.2

epoch JD24... max max m in m in max m in max 4 4 8 4 7 .2 8 0 4 2 9 0 2 .5 1 2 4 4 4 9 1 .2 5 6 4 3 2 8 2 .4 5 2 4 3 2 8 5 .4 9 3 4 2 9 5 7 .4 6 9 4 2 9 2 2 .4 9 0 4 4 0 7 2 .3 9 1 4 4 4 4 4 4 4 4 2 4 3 4 6 5 2 2 8 0 2 0 3 9 9 8 7 2 8 2 4 4 3 9 6 7 3 5 4 1 3 2 . . . . . . . . 5 4 4 4 2 3 4 5 2 5 4 3 7 1 7 2

period 0 .7 5 9 7 0 5 0 .7 3 4 9 6 4 0 .5 2 8 0 0 1 0 .3 8 1 2 0 9 0 .4 0 4 7 9 1 0 .3 8 3 0 1 2

rem. 1

1 1 1 1 1 1 1

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

3 3 5 5 5 5 6 7 7 8 8 8 8 8 8 8 8 9 9 9 9 9 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 5 5 6

m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m

0 5 1 1 4 5 1 2 5 0 0 2 2 3 3 4 5 1 1 3 4 5 4 5 5 2 3 3 4 4 5 5 0 0 2 2 3 3 4 5 0 0 0 2 3 4 5 5 2 2 2 3 1 1 2 3 3 4 5 5 0

4 2 3 8 9 7 5 3 5 9 9 3 9 4 4 0 0 1 1 7 6 1 6 0 6 3 4 7 5 8 4 9 2 5 4 4 1 7 0 3 4 4 8 2 2 4 0 2 3 3 4 4 2 4 2 4 6 4 0 9 5

s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s .

4 9 6 1 5 4 3 2 0 0 7 1 2 3 5 0 0 1 1 2 7 6 7 7 8 4 6 9 0 7 8 6 9 1 0 7 5 2 5 8 0 7 4 2 3 1 5 7 4 4 0 5 1 2 7 5 0 1 9 5 8

3 9 0 7 5 5 6 8 6 7 4 7 0 5 6 7 7 4 1 6 3 7 2 5 1 1 5 7 7 6 6 2 6 3 0 2 8 3 9 2 3 9 5 0 6 7 4 3 7 6 9 4 0 7 7 2 5 7 4 5 5 9 4 1 4 5 8 1

+4 +6 +6 +3 +5 +4 +4 +6 +6 +5 +8 +5 +5 +6 +6 +8 +5 +6 +6 +5 +6 +8 +8 +5 +8 +6 +6 +5 +7 +6 +7 +6 +8 +7 +8 +3 +9 +5 +3 +8 +4 +4 +9 +5 +7 +8 +4 +6 +6 +4 +4 +6 +7 +7 +6 +8 +6 +5 +4 +8 +7 +4 +7 +9 +5 +8 +4 +8

24 28. 0 55 42. 1 17 00. 4 49 25. 6 42 45. 2 18 42. 2 46 37. 4

1, 2 3 1, 4

5 3 0 1 1 0 1 1 1 0 0 3 2 3 0 2 5 2 0 5 3 1 0 5 2 2 4 4 4 2 2 5 4 3 3 1 0 2 2 2 1 1 3 0 0 0 1 1 1 2 0 3 3 5 0 1 0 5 1 0 1

4 6 3 4 3 2 4 0 5 8 9 7 9 0 9 9 9 4 3 1 0 6 7 1 1 5 0 4 7 6 6 6 9 3 1 6 1 0 8 4 4 3 2 0 8 0 3 1 3 1 5 1 0 5 0 9 4 9 1 2 1



4 0 1 2 4 4 1 2 5 3 0 2 1 2 4 0 2 2 5 4 5 4 5 1 1 0 3 0 5 3 1 2 5 2 5 1 1 4 0 3 3 4 0 0 3 5 2 2 1 4 4 4 4 0 2 3 1 2 0 2 3

4 2 5 0 9 5 4 6 8 3 9 9 6 5 0 6 0 6 3 4 6 1 7 0 9 2 0 1 4 3 4 2 1 2 7 6 8 9 6 4 2 5 4 1 4 2 7 5 3 5 4 3 9 0 3 3 4 9 9 8 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 3 6 9 9 6 5 7 3 3 8 5 8 4 9 0 3 2 0 2 5 1 8 8 7 5 7 5 8 6 8 6 6 1 8 1 0 9 2 4 0 7 2 1 7 6 1 7 0 3 6 4 7 6 2 0 8 5 9 8 3

1 0 .6 1 2 7 7 1 5 max -15.7 -15.35 3-16.25 5 0-14.8 m in m in max m in m in m in max max max max 6 5 -16.2 max m in max 0 5 0 0 0 0 4 0 0 0 0 0 0 5 0 0 0 4 .6 7 8 .5 .3 5 .3 1 .6 4 .2 5 8: .9 8 .4 7 .3 1 .6 4 .4 4 .6 1 4 .9 .7 2 .3 7 .3 9 7: 6 : 3 5 1 4 9 3 0 0 3 4 : 1 8 2 667 1, 6 4 7 8 5 3 0 2 7 7 8 2 8 5 2 9 5 1, 7 8 45

3 12 52 39

0 63 96 99

4 3 2 5 3 .5 1 7 4 2 9 3 3 .4 5 2 4 2 8 7 2 .4 9 4 4 2 8 7 6 .5 6 2 4 3 7 0 2 .3 9 2

354 422 473 639 512

1 9 1

1, 10 5

7 5

max max max max max m in m in max max m in m in max max max m in m in max max max max max max m in max m in max max m in max

4 2 9 5 4 .3 2 2 4 4 0 4 3 .4 3 1 4 3 1 9 8 .5 9 8 4 3 7 0 0 .3 1 7 4 4 0 8 7 .4 0 7 4 3 1 9 0 .5 9 7 4 9 9 4 9 .3 3 5 4 4 4 4 4 4 4 4 4 4 2 2 4 2 2 3 4 6 0 8 8 0 8 8 2 0 9 8 7 9 7 7 7 8 1 7 7 1 4 7 5 6 9 2 3 . . . . . . . . . 4 5 5 3 5 5 3 4 3 0 1 2 6 6 6 9 8 2 7 5 5 0 3 2 3 0 2

0 .3 9 2 5 0 1 0 .3 2 2 9 0 2 0 .0 9 9 9 5 4 1 0 .4 8 7 9 6 1

11

1 -15.5 0 .3 1 8 2 4 0 0 .4 1 2 6 6 6 1 .6 8 1 4 9 0 0 0 0 0 1 0 0 0 0 .2 9 2 .3 3 6 .3 5 5 .4 2 9 .2 5 6 43: .5 8 4 .2 8 4 .6 7 7 .2 9 9 6 1 9 9 8 4 5 6 6 7 6 8 4 0 8 7 8 6 4 0 2 8 8 0 5 9 0 1 5 5 5 4 6 9 3 4 .4 2 5 4 4 4 4 4 4 4 4 4 4 4 4 2 6 6 2 3 6 4 3 5 2 4 9 9 6 8 4 9 3 2 9 9 9 2 7 1 9 2 7 9 5 4 6 1 2 9 8 4 6 2 7 3 1 3 . . . . . . . . . . . 2 4 4 4 5 2 3 4 5 3 3 5 9 6 6 2 2 1 1 1 1 3 6 0 5 5 6 6 5 7 2 2 0 .3 1 2 4 3 4 1, 13 0 0 4 0 0 0 0 0 0 0 0 1 1 .4 9 .6 0 .2 2 .5 5 .2 7 .5 8 .3 1 .5 4 .7 6 .9 4 .5 4 45 6 .5 2 3 8 5 4 0 2 5 1 5 2 6 4 5 5 0 9 4 4 5 8 0 4 7 8 1 5 1 2 2 3 3 9 2 0 7 14 7 6 8 0 2 5 5 5

5 9-15.9 5-16.0 5

8 12 9

1

5-14.9 5-14.6

25-15.1 8 -15.85

15

1-16.0

1

4 2 8 9 4 .5 3


Vol. 58
Table1
Continued

287

MDV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Coord. (J2000)
h 56m 1 h 56m 4 h 56m 5 h 56m 5 h 57m 0 h 57m 3 h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h

GSC / USNO-A2.0 3 8 2 8 4 0 9 2 9 7 6 3 9 9 8 5 1 6 6 6 2 3 3 5 3 4 3 3 1 1 1 8 2 1 7 6 4 7 0 9 2 1 4 6 2 4 9 8 9 7 2 2 7 0 9 2 1 1 4 6 8 6 9 9 4 0 3 7 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

t ype H AD S LB RRC LB LB RRC: RRA B RRC: EW EB EB RRA B RRA B RRA B LB EB LB L B: LB EB EA RRC EA LB RRC RRA B EB LB EA SRB RRC EW LB RRA B SR: EW LB RRA B EA LB RRC: EW RRA B EW LB SRB: EB EW RRA B RRA B RRA B EW EW EW EB LB SRB LB EW LB LB EB LB LB SRB EW RRA B RRA B RRC

max-min-min II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 5 4 5 5 5 6 4 5 3 5 5 5 5 4 5 5 5 5 5 5 5 4 6 5 5 5 4 3 5 3 4 5 4 5 5 4 5 5 6 5 4 5 4 5 5 6 4 4 4 3 5 4 5 5 3 5 4 5 4 5 4 4 4 5 5 5 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 7 7 6 8 5 8 1 9 9 6 1 3 6 9 4 7 0 4 4 3 6 0 3 0 0 5 2 8 7 3 7 6 4 8 0 1 4 5 5 2 3 4 6 5 2 6 0 0 8 6 8 1 0 8 0 9 4 2 2 7 6 6 6 9 1 1 2 2 5-1 -15 -16 -15 5-1 -16 -16 5-1 -15 -16 5-1 -16 -16 -16 -16 -14 -16 -15 -16 5-1 -15 -16 -16 -14 -16 -16 5-1 -15 -15 -14 -15 -14 -15 -16 -15 -15 -15 -14 -16 -16 5-1 -16 -15 5-1 -15 -15 -16 -16 -14 -16 -15 -14 -15 5-1 -16 -15 -14 -15 -14 -15 -15 -16 -15 -15 -15 5-1 -16 -16 -15 5. .3 .0 .1 6. .2 .6 6. .6 .5 4. .2 .0 .5 .5 .9 .3 .9 .5 5. .9 .2 .0 .7 .5 .0 6. .6 .4 .2 .9 .2 .0 .3 .3 .4 .5 .8 .4 .2 6. .1 .3 5. .0 .9 .1 .5 .9 .2 .5 .1 .6 4. .1 .5 .3 .8 .6 .8 .1 .2 .1 .1 .7 5. .1 .1 .8 3 5 3

epoch JD24... max max 4 3 2 4 9 .5 4 8 4 4 3 9 7 .4 1 5

period 0 .1 0 7 9 2 7

rem. 1

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4

m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m

4 4 4 5 0 0 0 0 2 2 2 3 3 4 4 5 1 1 1 1 2 2 2 3 4 4 0 0 0 1 3 3 3 5 5 0 0 0 1 1 1 1 2 2 3 4 4 5 5 5 0 0 1 2 2 5 0 1 2 3 3 4 5

7 1 0 6 1 2 2 4 6 8 1 5 7 9 1 2 8 4 4 0 8 9 1 2 5 9 2 9 9 9 7 8 0 3 7 2 2 7 7 6 9 0 5 3 1 2 3 4 3 9 6 1 9 4 7 9 5 7 0 4 4 1 4 6 2 4 9 3 1

s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s .

8 0 8 5 5 5 6 8 8 8 2 4 9 4 3 5 5 1 7 0 4 3 5 1 9 7 5 3 4 8 7 5 7 7 8 4 6 0 8 8 3 8 6 9 4 5 5 0 1 4 9 8 9 9 0 8 9 1 5 1 6 4 7 5 4 1 6 4 2

8 5 7 3 7 3 6 4 2 9 9 1 4 4 6 5 8 0 3 5 6 0 8 8 5 1 0 6 1 1 6 1 5 1 2 9 8 1 3 5 8 3 0 3 2 0 4 3 4 7 8 5 8 0 7 0 8 7 2 3 7 8 0 3 3 2 2 3 4

+6 +5 +8 +4 +6 +5 +4 +7 +5 +4 +5 +9 +8 +8 +6 +5 +6 +6 +5 +4 +7 +4 +9 +7 +5 +7 +5 +4 +8 +4 +9 +8 +7 +4 +4 +6 +6 +8 +5 +9 +7 +4 +6 +7 +7 +6 +6 +8 +8 +7 +5 +4 +8 +6 +6 +7 +5 +4 +3 +5 +6 +8 +3 +8 +8 +4 +7 +5 +8

22 4 53 5 08 0 19 0 15 2 19 2

2 3 5 0 4 0 2 0 3 5 1 0 0 5 1 2 0 5 1 5 0 3 4 5 2 1 2 4 3 2 5 5 0 2 2 0 2 0 2 4 5 1 0 1 3 3 4 3 0 2 0 2 5 1 4 0 5 2 1 4 3 5 0

3 2 5 9 9 2 2 5 5 3 0 2 1 4 6 0 1 2 3 1 7 2 5 9 2 0 6 1 0 6 0 5 6 1 1 7 1 8 6 8 2 2 1 2 2 3 3 4 2 2 3 0 7 6 0 5 4 3 2 3 1 3 3



5 5 2 4 2 3 5 0 0 1 0 5 0 1 4 0 5 0 1 0 3 3 4 5 4 4 2 2 2 2 2 0 0 2 2 5 1 0 4 1 5 1 3 4 1 0 5 1 0 0 0 4 1 5 5 3 1 3 3 2 0 2 5

0 0 0 5 6 2 1 6 1 6 7 3 0 5 4 2 1 6 0 7 6 2 0 4 7 9 1 2 8 3 9 3 0 4 0 1 0 7 7 9 4 8 1 6 7 4 5 4 6 6 0 0 7 1 7 3 3 4 6 1 6 6 7 1 0 6 3 3 8

A G A G A A A A A A G A A A A G A G G A A A A G A A A G A G A G G A A A G G A A A A A A G A A A A A A G A A A G G A A G G A G G G A A A A

20 SC 20 SC 20 20 20 20 20 20 SC 20 20 20 20 SC 20 SC SC 20 20 20 20 SC 20 20 20 SC 20 SC 20 SC SC 20 20 20 SC SC 20 20 20 20 20 20 SC 20 20 20 20 20 20 SC 20 20 20 SC SC 20 20 SC SC 20 SC SC SC 20 20 20 20

900-10977879 00429-00460 975-10041649 00425-00661 900-11015717 900-11043387 900-11052443 975-10077478 900-11056158 900-11066904 00429-01622 975-10091473 975-10093169 975-10094181 900-11087520 00429-00150 900-11094464 00429-00842 00425-00007 900-11105212 900-11113082 900-11123180 975-10136593 01007-01100 900-11138974 975-10142159 900-11145400 00425-01015 975-10148658 00425-00040 975-10161161 01007-01237 00442-00127 900-11185755 900-11189631 900-11194031 00442-01610 01008-00060 900-11218671 975-10208777 900-11240189 900-11241662 900-11246429 900-11304795 00442-00055 900-11313535 900-11314540 975-10263405 975-10270079 900-11330921 900-11338540 00438-02006 975-10289889 900-11357287 900-11359572 00442-00400 00438-01095 900-11369966 900-11373534 00438-01591 00442-01740 975-10335151 00438-00764 01008-01224 01008-01677 900-11460939 975-10371582 900-11470688 975-10380595

0 .3 5 0 0 6 4 1 1

4 -15.5 -16.1 4-13.8

max max max m in m in m in max max max m in

4 4 4 4 4 4 4 4 4

3 4 2 6 3 2 3 3 4

4 7 9 9 0 9 9 1 4

2 8 6 7 3 5 3 8 5

7 9 3 2 4 7 8 9 5

. . . . . . . . .

2 3 3 3 2 3 5 5 3

8 9 3 2 3 3 7 9 0

3 4 2 0 0 8 8 3 2

0 0 0 0 0 0 0 0 0

. . . . . . . . .

3 4 2 5 9 4 7 6 4

3 6 8 4 1 2 7 3 7

2 4 4 7 3 5 7 3 7

7 9 0 2 1 8 1 0 4

0 0 0 6 8 9 3 4 0

1 5 3 4 5 8 3 2 3

3

5 -14.65 4 4 4 9 4 .2 4 7 0 .3 2 3 3 8 8 1 1, 16 1 9-15.7 m in m in max m in max max m in m in max m in max -15.35 m in max m in max m in max m in 4 4 4 4 2 2 2 3 8 8 9 2 7 7 2 7 1 2 2 2 . . . . 5 5 4 4 20 2 90 1 0 1 0 6 . . . . 6 5 3 3 4 5 1 5 9 8 8 9 782 47 133 3

9 17

0-15.8 5 -15.0

4 6 9 7 7 .4 6 3 4 3 2 8 4 .4 4 9 4 2 9 8 9 .2 9 5 4 6 9 7 7 .4 6 4 3 2 8 9 .3 9 3 4 5 2 0 3 .3 0 5 4 2 8 7 2 .5 2 3 4 4 8 4 7 .2 8 0 4 2 8 7 4 .5 3 0 4 4 8 4 7 .2 8 4 4 4 4 5 4 3 6 2 8 2 6 2 5 4 1 8 0 9 9 . . . . 2 2 5 4 4 8 4 0 3 0 6 6

0 .3 8 6 8 4 6 0 .5 9 9 4 0 2 0 .4 0 4 3 8 1 1 1 6 0 0 .2 6. .2 .3 0 5 8 4 425 : 5936 5281 1, 18 9 1 0 .6 8 4 8 0 5 31: 0 .4 4 8 9 6 9 0 .6 6 7 5 4 2 .1 0 0 3 8 1 0 0 0 0 9 0 0 0 0 0 0 0 0 0 . . . . 3 3 5 3 3 2 8 3 0 4 1 2 6 8 6 6 3 5 0 8 3 9 7 0 1 1

-14.15

-15.9 5 -15.9 9-15.9

-15.95 -16.4

5-1 -15 6-1 -15

4 .1 5 .6 4 .6 .9 5

m in m in max max max m in m in m in m in

4 4 4 4 4 4 4 4 4

2 3 3 2 2 5 6 3 3

9 6 0 9 9 1 5 2 6

2 8 3 6 2 7 9 7 9

5 5 6 3 2 1 6 7 2

. . . . . . . . .

4 3 2 5 4 3 4 5 3

5 4 3 0 9 8 7 2 9

6 2 7 5 0 7 8 3 2

2: .4 6 .4 1 .6 7 .5 0 .5 3 .3 8 .3 9 .3 7 .3 9

19 1 1, 20

4 4 9 9 7 1 2 6 2

1 6 2 0 8 7 2 7 1

7 8 2 0 3 2 7 0 7

4 0 1 9 0 8 8 6 0

21

6 3 .5 : 5-14.65 m in 4 3 0 4 6 .2 6 8 0 .3 0 7 3 8 4

1 1, 22 5

1 -16.05 5 5 6-15.5 m in 4 4 7 3 2 .5 2 1 0 .3 9 9 1 5 2 1 1 1, 23 24

m in max max max

4 4 4 4

3 2 2 3

1 8 9 4

9 9 2 2

8 1 6 0

. . . .

6 5 5 2

0 2 0 4

0 9 0 7

7 0 0 0 0

4 .3 .5 .6 .2

3 8 5 7

5 9 8 6

0 4 6 0

5 7 4 9

1 1 2 0


288
Table1
Continued

A. A.

MDV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 7 7 7 7 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Coord. (J2000)
h 04m 5 h 05m 0 h 05m 2 h 05m 2 h 05m 3 h 05m 3 h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h

GSC / USNO-A2.0 3 1 1 3 0 1 8 2 8 4 7 5 0 6 2 2 3 2 1 0 8 4 0 2 3 5 8 1 6 5 7 4 8 3 9 4 8 1 5 5 0 7 3 2 9 1 7 8 0 7 7 8 9 2 7 8 6 9 8 8 3 7 1 9 5 2 4 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

t ype EB LB LB EB RRA B H AD S EB SRB: RRA B RRA B RRA B: RRC EB EB SR: RRA B RRA B EA SR EW RRC LB EW LB SRB RRA B SRB: EA EW LB LB SRA RRC: RRA B EW L B: LB RRA B SR SR: EW RRC: EB LB SRB RRC LB EW H AD S SRB EB EA RRA B LB EW EB EB RRC EB LB EW EW EW RRA B RRA B EW LB SR

max-min-min II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 5 4 5 5 5 4 5 5 4 5 6 4 5 5 4 5 5 5 5 4 4 5 4 5 5 5 3 3 4 4 5 5 4 4 4 5 5 5 4 4 3 5 5 4 5 5 3 5 5 5 3 4 4 4 4 5 4 4 5 4 5 4 4 4 5 4 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 3 1 0 7 2 2 9 8 5 0 9 8 5 8 8 3 3 0 3 4 9 7 8 9 3 7 8 8 9 3 4 3 6 2 4 3 4 5 2 8 7 0 9 8 0 9 4 1 5 6 9 9 1 6 1 4 7 1 0 0 9 8 9 5 8 0 -14 -16 -15 5-1 -16 -16 5-1 -16 -16 -15 -16 -16 -15 -16 -16 -15 -16 -16 -16 -15 -14 -14 -16 -15 -16 -16 -16 -14 5-1 5-1 -15 -16 -16 -15 -15 -14 -16 5-1 -15 5-1 -14 5-1 -16 -15 -16 5-1 -15 -14 -15 -15 -16 -14 -15 -15 -14 -15 5-1 -14 -15 -16 -14 -15 -15 -15 -15 -16 -15 -15 .3 .0 .1 5. .3 .1 5. .1 .8 .2 .2 .7 .4 .2 .1 .8 .7 .2 .4 .6 .8 .9 .4 .1 .5 .7 .4 .3 4. 5. .5 .5 .0 .2 .2 .9 .2 6. .9 5. .5 4. .2 .8 .0 6. .9 .1 .9 .9 .0 .1 .6 .4 .6 .2 5. .7 .4 .0 .3 .5 .2 .4 .9 .1 .7 .7 -14.15 5 8-15.3

epoch JD24... m in 4 3 3 3 2 .3 5 6

period 0 .7 4 9 8 8 9

rem. 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2

m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m

4 4 5 0 1 1 1 3 3 3 3 3 4 5 5 0 1 1 2 3 4 4 5 5 0 0 1 1 1 2 2 3 4 5 5 0 0 0 0 1 2 2 2 4 5 5 5 0 1 2 2 2 5 5 0 1 2 2 2 5 0 0

8 0 7 9 5 9 2 9 4 5 2 5 8 0 1 2 6 8 6 1 6 5 2 6 1 6 1 9 6 9 1 3 0 1 4 4 4 0 4 5 6 4 9 9 9 3 3 6 7 8 1 3 9 7 7 0 4 9 5 9 5 2 0 2 5 1 7 9

s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s .

4 4 9 8 6 4 7 4 4 8 1 2 6 8 8 7 5 3 3 4 1 6 7 3 5 9 2 6 0 0 9 1 1 1 5 3 3 8 5 9 1 4 1 1 9 5 7 1 6 6 0 9 2 7 4 0 5 5 7 0 3 6 0 9 2 4 6 7

8 1 2 8 0 2 5 5 3 1 3 8 3 0 2 8 4 5 7 1 8 5 3 9 4 3 8 5 4 1 2 0 2 7 3 0 1 2 5 7 8 3 2 6 3 4 8 6 2 0 9 4 9 9 4 7 6 4 1 0 4 7 3 4 2 9 3 5

+3 +6 +7 +6 +8 +5 +5 +7 +7 +5 +5 +7 +8 +8 +3 +4 +5 +8 +8 +5 +6 +6 +4 +5 +5 +7 +6 +5 +4 +4 +5 +6 +5 +3 +4 +6 +5 +5 +5 +5 +5 +7 +5 +3 +7 +5 +6 +5 +4 +6 +5 +4 +4 +7 +8 +6 +5 +4 +6 +5 +7 +5 +7 +3 +8 +3 +6 +5

46 0 22 5 16 5 07 5 35 0 10 1

2 5 1 5 0 0 5 2 5 2 0 0 5 0 2 0 5 1 3 2 4 2 5 4 2 1 4 5 4 2 2 3 5 1 5 5 0 4 2 5 5 3 2 0 0 1 4 5 1 0 2 2 2 0 5 2 1 4 4 5 0 1

0 5 3 4 6 6 5 2 9 9 0 2 0 9 7 5 8 6 2 6 5 7 6 5 3 4 0 2 7 8 6 9 7 2 7 5 4 7 8 0 1 5 8 0 3 6 4 8 1 2 7 2 0 7 4 6 6 3 1 0 3 8



1 1 4 5 3 3 2 0 5 3 4 5 1 3 4 1 1 5 1 3 2 5 4 5 5 1 5 5 5 1 1 1 5 3 1 3 2 5 0 4 4 5 5 3 4 0 2 2 2 0 1 4 0 4 0 1 1 3 1 0 4 4

9 1 1 3 0 8 1 8 2 4 8 1 5 0 8 2 6 2 6 2 4 9 3 2 3 9 6 6 7 6 2 3 3 6 9 0 7 8 0 7 1 8 6 1 8 1 7 9 7 6 2 6 1 7 1 0 3 3 7 6 6 1 9 2 5 6 7 1

G G G A A A G A A A A A A A A A A A A A A G A G A A G G G G G A A A A G A A G G A G A G G A G G A G A G A G G A A G A G G A A G A A G G

SC SC SC 20 20 20 SC 20 20 20 20 20 20 20 20 20 20 20 20 20 20 SC 20 SC 20 20 SC SC SC SC SC 20 20 20 20 SC 20 20 SC SC 20 SC 20 SC SC 20 SC SC 20 SC 20 SC 20 SC SC 20 20 SC 20 SC SC 20 20 SC 20 20 SC SC

00438-00473 00442-00933 00442-00860 900-11519382 975-10414913 900-11529745 00438-01029 975-10425490 900-11545785 900-11558043 900-11565052 900-11568523 975-10449092 975-10458817 900-11586690 900-11587789 900-11592041 975-10464850 975-10471271 900-11608642 900-11614215 00442-00871 900-11632505 00438-00265 900-11642030 900-11659025 00443-00936 00439-03982 00439-01998 00439-03124 00439-00910 900-11688498 900-11696307 900-11697505 900-11701213 00443-02136 900-11711826 900-11718894 00443-00420 00439-02500 900-11747125 01009-02317 900-11761590 00439-03557 00443-00094 900-11766734 00443-00758 00439-00043 900-11782663 00443-00459 900-11808436 00439-00357 900-11817531 01009-02199 01009-01807 900-11840595 900-11845655 00439-03369 900-11878794 00439-01424 01009-02424 900-11896688 900-11904490 00435-00252 975-10706743 900-11938410 00443-01265 00439-00431

0-14.5

m in max max m in max max max max m in m in max max m in m in max m in

4 4 4 4 4 4 4 4 4 4

3 2 3 2 2 2 2 3 3 2

2 9 4 8 8 9 8 4 1 9

7 5 1 9 7 5 6 1 9 5

2 1 8 1 4 7 8 7 9 7

. . . . . . . . . .

3 3 2 5 5 4 5 2 5 4

7 5 1 2 6 0 0 1 8 7

5 5 3 9 4 3 7 2 5 0

-15.1 5-16.1

-15.5 -15.55

4 2 9 2 5 .3 9 2 4 2 8 6 8 .5 3 9 4 5 2 3 2 .2 4 4 6 6 5 3 .4 1 4 4 6 6 1 7 .3 4 2 4 4 4 9 1 .2 5 6

1 0 0 0 7 0 0 0 0 0 0 4 0 0 1 2 0 0

.0 1 .5 3 .1 3 .5 0 0: .6 1 .6 5 .9 2 .3 3 .7 4 .3 7 7: .6 7 .4 9 .5 1 54 .4 7 .3 2

8 1 1 2 7 7 3 2 0 9

7 8 8 3 8 3 1 1 3 8

6 8 7 1 4 0 5 9 6 5

5 8 0 7 2 3 5 2 1 5

21 25 1

26

1 0269 6878 209 1 8173 2833 5

5-16.4 5

0 .2 9 8 8 1 6 7 0 1 0 0 8 .3 : .5 8 8 9 6 9 45: .7 1 1 6 1 5 .5 1 9 0 8 5 1 1, 27 1, 28

max -13.75 1-14.05 4 m in m in

4 2 8 7 5 .5 3 1 4 4 4 5 5 .3 0 2 4 4 0 2 5 .4 3 2

5-15.15

max max m in

4 6 9 7 2 .3 1 6 4 4 4 8 9 .2 7 4 4 2 8 7 0 .4 8 1

1 0 0 0

31 .3 1 2 1 9 4 .6 7 5 2 4 4 .2 0 0 4 6 6

1 1 1, 29

30 1, 27 1 1 1

0 3 -14.5 2 -16.05

max

4 3 2 8 2 .4 8 7

m in max m in

4 2 9 3 0 .4 0 1 4 6 9 7 3 .4 5 5 4 2 8 9 2 .5 3 9

0 1 5 0 0 0

.7 4 9 80: 1 .7 : .4 2 1 .4 3 6 .9 7 1

949

105 515 54 1 1 1

3 -14.1

max m in max m in m in max m in m in m in max m in m in m in m in max max m in

4 2 8 6 8 .5 3 9 4 6 9 7 9 .4 6 4 4 2 9 2 7 .4 1 5 4 6 9 7 1 .3 1 7 4 2 9 2 2 .4 9 4 2 8 7 2 .5 2 3 4 4 4 4 4 4 4 4 4 4 4 6 2 2 3 3 2 5 2 2 2 6 9 9 8 2 6 8 2 8 9 9 3 7 2 7 8 9 9 0 9 0 0 4 9 7 0 4 4 0 3 1 1 2 4 . . . . . . . . . . . 3 4 5 4 3 5 3 5 5 5 2 9 1 4 8 9 1 0 2 2 1 3 0 0 6 3 5 2 5 9 0 2 6

6 5 .7 0 .3 3 9 9 9 7 0 0 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 .3 .0 9 .6 .9 .6 . . . . . . . . . . . 4 6 3 2 9 4 4 5 5 4 4 93194 610848

1, 31 21532 4171 07108 1 4 5 9 3 0 1 9 8 6 9 4 9 4 6 6 1 0 2 5 5 8 3 7 7 2 1 1 1 4 5 0 1 8 9 8 3 6 3 0 0 3 7 3 0 5 6 5 6 8 4 1 1 9 3 3

-15.8

-14.6 -15.0 8-15.5 5-15.1 -14.3 -15.4 5-15.2

9 1

3

-16.1

1 4 2 .4


Vol. 58
Table1
Concluded

289

MDV 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 1 1 1 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Coord. (J2000)
h 12m 1 h 12m 2 h 12m 2 h 12m 3 h 12m 3 h 12m 3 h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h

GSC / USNO-A2.0 7 5 5 9 3 3 0 5 7 1 9 2 4 9 2 8 9 7 4 4 1 0 0 6 2 1 2 7 5 0 2 0 8 4 1 3 8 0 5 5 2 0 9 4 4 3 3 4 7 6 2 6 1 5 3 7 1 8 0 5 4 0 6 9 4 6 5 2 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

t ype SR: SR: LB EW LB RRA B LB LB EB LB LB SR: SRB RRA B SR: LB RRA B EW LB EB SR: LB RRA B RRA B SRB: RRA B RRA B LB LB SRB EW LB SRB RRC E B: RRA B LB SR SRB: SR SRB RRC LB LB LB RRA B EW LB EA RRA B EW EA SR: SR LB RRA B EW EW SR: EB RRA B SR: LB EW: EW LB LB H AD S EW

max-min-min II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 3 5 5 5 5 5 5 4 5 4 5 4 4 5 4 5 4 5 5 5 4 4 5 4 5 3 4 5 5 5 4 4 5 4 5 5 4 5 5 5 4 3 4 4 4 5 5 4 5 5 5 5 4 4 5 5 5 5 5 5 5 4 5 4 4 5 5 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 6 7 4 1 0 2 8 7 7 1 1 5 3 6 8 6 5 1 1 4 9 7 9 0 6 8 3 4 8 8 6 8 8 5 5 1 2 6 2 8 7 9 4 6 4 3 3 2 1 3 1 4 3 1 0 1 1 3 4 1 3 3 9 5 5 2 1 -15 -14 -16 -16 -16 -16 -15 -16 -15 -16 -15 -16 -14 5-1 -16 -15 -16 -15 -16 -16 -16 -15 -16 -16 -15 -15 -14 -15 -16 -16 -16 -15 -15 -16 -15 -16 -16 -15 -15 -16 -16 -15 -14 -15 -14 -15 -16 -16 -14 -16 -15 -16 -16 -16 5-1 -16 -15 -15 -15 5-1 -16 5-1 -14 -15 -15 -15 -16 -15 -15 .3 .2 .4 .2 .4 .2 .6 .3 .4 .3 .5 .2 .7 5. .0 .3 .3 .4 .0 .0 .3 .1 .5 .4 .8 .9 .1 .3 .4 .1 .3 .6 .2 .2 .1 .4 .2 .0 .8 .5 .2 .5 .2 .5 .9 .1 .0 .2 .8 .2 .7 .3 .1 .0 4. .0 .3 .8 .9 5. .3 5. .9 .9 .5 .3 .1 .8 .7

epoch JD24...

period

rem. 1, 32 1, 33 1 34 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2

2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 8 8 8 8 9 9 9 9 9 9 9 9 0 0 0 0 0 0

m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m

4 5 0 0 0 0 1 2 2 3 4 5 5 5 0 1 2 2 2 0 1 1 1 2 2 3 3 4 4 4 1 1 2 3 4 4 4 5 0 1 2 2 3 3 3 0 3 5 5 1 1 2 2 2 2 3 5 0 0 1 1 3 5

4 1 9 1 7 7 0 9 0 1 6 8 3 1 7 7 4 4 6 8 7 2 2 2 4 4 1 3 4 0 8 1 8 7 7 8 1 8 7 5 0 5 6 0 0 1 0 2 0 2 7 0 1 6 7 7 8 0 1 1 8 4 2 0 4 5 9 0 5

s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s .

3 4 3 6 3 9 0 7 2 8 7 6 9 9 9 2 9 9 5 6 6 3 8 8 3 1 7 5 4 9 1 4 8 0 8 9 2 4 1 1 1 2 1 0 6 3 5 3 4 0 9 3 4 3 0 2 4 3 1 3 9 9 6 8 1 5 3 0 1

9 5 2 1 2 2 9 5 1 8 8 1 0 3 1 8 9 0 0 9 0 4 4 8 8 7 1 3 8 6 5 4 2 1 7 4 2 3 4 9 0 2 9 9 9 9 7 7 5 9 2 5 1 3 1 2 3 2 7 8 2 0 7 6 0 8 5 8 1

+9 +5 +5 +5 +3 +7 +4 +4 +6 +3 +8 +5 +6 +4 +6 +6 +6 +4 +6 +8 +9 +5 +5 +6 +7 +7 +6 +9 +7 +5 +6 +6 +6 +5 +6 +7 +7 +6 +6 +5 +6 +7 +8 +5 +4 +6 +6 +5 +8 +8 +4 +5 +4 +4 +6 +4 +6 +4 +5 +6 +5 +6 +4 +8 +4 +8 +6 +3 +4

06 1 26 5 10 0 21 0 49 3 18 2

4 2 5 4 1 2 1 2 2 5 3 4 2 5 0 0 3 0 1 5 4 0 2 3 4 1 2 3 1 0 2 1 4 3 3 5 1 4 2 1 0 2 1 1 5 1 1 4 3 5 3 3 1 2 3 1 1 2 1 0 2 4 4

5 0 2 0 5 5 6 0 3 3 2 2 2 5 1 7 1 9 2 5 7 6 9 9 7 9 9 8 8 8 1 6 2 4 7 7 8 1 9 8 8 6 4 4 8 8 5 0 7 7 4 9 7 2 7 2 6 5 1 3 0 8 4



3 3 2 4 4 2 5 3 1 3 1 3 4 4 4 3 3 5 5 4 0 0 3 1 5 2 5 3 4 3 4 1 5 3 1 5 4 1 2 1 4 1 4 1 1 0 2 0 5 2 4 4 2 4 5 1 3 0 3 3 0 0 4

7 7 6 6 2 1 6 3 4 8 4 3 9 6 4 4 9 9 3 0 7 4 7 4 2 5 6 8 4 4 9 1 9 6 2 4 1 6 5 0 3 1 5 0 7 2 7 0 1 5 4 2 9 5 5 5 3 0 1 3 0 2 6 5 4 4 9 5 0

GSC 01009-00236 GSC 00439-01334 A2 0900-11978953 A2 0900-11981473 A2 0900-11987723 A2 0900-11988370 A2 0900-11990648 GSC 00439-04024 A2 0900-12012307 A2 0900-12014075 GSC 01009-01148 A2 0900-12021203 GSC 00443-02710 2M18132192+0420395 GSC 00443-02477 GSC 00443-01862 A2 0900-12059839 GSC 00439-02896 GSC 00443-02513 A2 0975-10845746 GSC 01009-00647 GSC 00439-00952 A2 0900-12100102 A2 0900-12100136 GSC 00443-00593 A2 0975-10907379 GSC 00444-00676 GSC 01009-01210 A2 0900-12156313 A2 0900-12163463 A2 0900-12171052 GSC 00444-01586 A2 0900-12182330 A2 0900-12191325 A2 0900-12192227 A2 0900-12193398 A2 0900-12217660 GSC 00444-02004 GSC 00444-00546 A2 0900-12244463 GSC 00444-00861 A2 0975-11002638 GSC 01010-01418 GSC 00444-00149 GSC 00440-02278 GSC 00444-02072 A2 0900-12293340 GSC 00440-00741 A2 0975-11046328 A2 0975-11047913 A2 0900-12311653 A2 0900-12334379 GSC 00440-01122 GSC 00440-01831 GSC 00444-01364 A2 0900-12418606 GSC 00444-01143 A2 0900-12422241 GSC 00440-00611 A2 0900-12423516 A2 0900-12432214 A2 0900-12438878 GSC 00440-02850 A2 0975-11206579 A2 0900-12469784 GSC 01010-02424 A2 0900-12484774 A2 0900-12494927 A2 0900-12518388

5-16.2

m in max

4 4 8 3 9 .2 7 3 4 6 5 9 1 .4 6 2

0 .3 6 0 4 0 9 0 .6 4 7 3 6 2

-15.2

m in

4 2 9 3 0 .4 0 1

0 .4 5 1 9 3 8 1 1 1, 35 1, 36 1 1

4

max

4 4 8 1 5 .3 8 0

1 5 0 4

82 8: .5 3 8 1 9 0 15:

-15.3 -15.3

max m in m in

4 2 9 5 7 .4 6 9 4 2 8 7 2 .5 2 3 4 6 9 7 8 .3 1

0 .6 2 9 5 2 9 0 .3 5 3 2 1 9 1, 37 1 .0 8 4 0 3 0 81: 0 0 6 0 0 .4 .7 9. .4 .6 4 5 8 8 1 4 6 : 6 4 778 962 1 940 567 1 1 5 1 1 3 4 4 1 1 1 9 1 1 1, 38 1

max max max max

4 2 9 0 2 .5 1 2 4 4 4 8 9 .2 7 4 4 4 1 1 3 .3 0 4 4 3 1 9 9 .5 8 5

-16.25

m in

4 4 3 9 7 .4 1 5

85: 0 .3 6 3 1 1 7 6 0 1 0 8 8 2 7 0 1: .2 8 4 1 9 3 .5 4 5 2 8 .5 6 6 6 5 6 0 6: 52: 3: .2 8 1 6 7 6

5-15.05

max m in max

4 6 6 5 3 .4 1 4 4 6 5 9 1 .4 6 4 4 1 0 7 .2 9 0

9 0 1 , 42

max

4 3 2 5 4 .5 3 4

5 -15.9 -14.45 -15.6 :-16.0:

max m in m in max m in m in

4 2 8 7 2 .5 2 3 4 6 6 2 3 .4 5 5 4 4 4 4 3 3 4 3 4 1 1 1 2 9 3 9 0 7 1 8 . . . . 2 6 2 6 50 23 97 0

0 .8 2 0 6 2 8 0 .3 2 5 4 3 0 1 0 0 0 3 . . . . 8 5 4 0 4 2 2 5 5 1 3 8 8 4 9 1 30 03 64 9

148 8 -15.3 -15.7 9-15.6 6 -15.9 -15.4 m in m in 4 4 8 3 9 .2 7 3 4 3 4 2 2 .1 9 9 max m in m in m in max 4 3 2 7 2 .4 0 9 4 3 4 2 2 .1 9 9 4 4 7 3 2 .5 2 1 4 3 2 7 7 .5 2 3 4 6 9 7 3 .4 5 5 0 .5 3 4 3 9 2 0 .4 5 7 6 7 2 0 .3 7 6 2 3 5

43 1, 44 1 5

1, 28 0 .9 3 8 5 6 7 0 .7 6 2 2 7 1 8 8 .3 : 0 .5 2 7 5 4 0 0 .4 6 5 7 3 8 1 3 1 1 45

-15.65

max m in

4 3 2 4 3 .4 3 8 4 6 6 4 6 .4 0 1

0 .0 9 7 2 9 6 0 .4 6 3 4 2 8


290

A. A.

Remarks to Tables 1 and 2. 1. Variable in NSVS data. 2. P = 55.6 d (from NSVS data). 3. A twice shorter period and type RRC are possible. 4. P = 39.7 d (NSVS data). 5. A small-amplitude variable in NSVS data. 6. P = 60 d (NSVS data). 7. P 50 d (NSVS data) is possible. 8. A twice longer period is possible. 9. A twice longer period and type EW are possible. 10. P 51 d (NSVS data) is possible. 11. A CCD study following this discovery was announced in Antipin et al. (2007). 12. A white or yellow star, J - H = 0.529 (2MASS). 13. P 62 d (NSVS data) is possible. 14. NSVS data show variations with the same period. 15. 1-day aliases of a twice shorter period are strong. 16. P = 45 d (NSVS data). 17. Variable in ASAS-3 data, not included into the ASAS-3 catalog of variable stars. 18. Not identical to V568 Oph ( 17h 59m 44s 09 , +4 59 55. 6 , J2000). 19. 1-day aliases ( 0.399278 d and 0.285235 d) are . also quite possible. 20. The periods 83.8 d or 92.5 d are possible (NSVS data). 21. A double star. 22. P 63.5 d (NSVS data) is possible. 23. P = 75 d (NSVS data). 24. The period 0.286864 d (type EW) is also quite possible. 25. O'Connell effect. 26. A 1-day alias, P = 0.49813 d, is possible. 27. P 78 d (NSVS data) is possible. 28. P 150 d (NSVS data) is possible. 29. P 130 d (NSVS data) is possible. 30. A twice shorter period and type HADS are possible. 31. P = 58 d (NSVS data). 32. P = 48 d (NSVS data). 33. P = 62 d (NSVS data). 34. P = 0.305252 d is also possible. 35. P 250 d (NSVS data) is possible. 36. P 60 d (NSVS data) is possible. 37. P 54 d (NSVS data) is possible. 38. P 85 d (NSVS data) is possible. 39. A 1-day alias, P = 0.397451 d, is possible. 40. A twice shorter period and type RRAB are possible. 41. The coordinates are from the USNO-A2.0 catalog. 42. P = 81 d (NSVS data). 43. Possibly, the minima are deeper. 44. P 82 d (NSVS data) is possible. 45. A 1-day alias, P = 0.081429 d, is possible.

MDV80 L
Magnitude, B
14 14.1 14.2 14.3 14.4 14.5 14.6 3000 4000 5000 6000 7000 8000 9000 10000

JD

2440000+

Fig. 4. The light curve of the "white" slow irregular variabl e star MDV 80.

Most of the new red variable stars we detected also definitely vary in the NSVS observations. It should be especially noted that we did not use the NSVS data to discover new variables in our field but used them only for inde pendent confirmation of our discoveries. Table 1 does not include some 30 stars we selected as variability suspects. Their amplitudes are too small for reliable judgment from photogr aphic data if they are genuine variable stars. We are planning special follow-up C CD observations to confirm and study these variables. We were able to confirm variability of 11 stars listed earlier in the NSV catalog. Six of them are periodic variables, for them we present the ep hemerides for the first time. The remaining five stars are red irregular variabl es. We also determined new ephemerides for two GCVS stars: the period we find for the e clipsing star V947 Oph is completely different from that in GÆtz et al. (1957), and we present the first ephemeris for the RR Lyr variable V2087 Oph. The data on the 13 known variables are presented in Table 2. The coordinates given in Tables 1 and 2, unless stated, are from the 2MASS point-source catalog (Cutri et al. 2003). The light curves for the eight periodic stars are displayed in Fig. 5.


Vol. 58
Table2
New Data on Known Variables

291

GCVS/NSV N N N N N N N V N N V N N SV SV SV SV SV SV SV 947 SV SV 208 SV SV 9475 9642 9704 9721 9734 9740 9973 Op h 10129 10291 7 Op h 10381 10403

HV/SON H H H S H S S S S S S S S V 110 V 110 V 110 9837 V 110 9838 9277 4199 9857 9867 9297 9298 9872 11 40 46 53 1 1 1 1 1 1 1 1 1 1 1 1 1 7 7 7 7 7 7 8 8 8 8 8 8 8

Coord. (J2000)
h 40m 1 h 45m 2 h 48m 0 h 49m 0 h 49m 3 h 49m 4 h h h h

t ype 1 1 4 9 0 4 1 5 7 9 2 8 5
. . . . . . . . . . . . .

max-min-min II 1 1 1 1 1 1 1 1 1 1 1 1 1 5 4 4 5 4 5 5 4 4 5 5 4 4 . . . . . . . . . . . . . 4 6 1 4 9 1 2 3 7 2 1 0 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 6 4 6 5 5 6 4 5 5 6 4 5 . . . . . . . . . . . . . 4 0 7 0-15.9 6 9-15.2: 0 8 4 9 3 7 1

epoch JD24... max max max m in m in m in 4 4 4 4 2 2 2 2 9 8 9 9 5 7 3 3 7 0 4 0 . . . . 3 4 3 5 7 8 8 0 0 1 0 9

period 0 0 0 0 . . . . 5 4 3 2 2 6 2 5 6 7 0 5 2 7 7 4 0 8 5 5 3 4 7 8

rem.

0 0 0 0 h1 h1 h1

0 2 3 9 1 3 4

m m m m

3 0 5 5 m1 m0 m0

3 6 6 3 0 3 2 5 4 2 6 9 0

s . s . s . s . s . s . s . s . s . s . s . s . s .

3 2 2 3 1 4 1 3 7 6 3 7 4

1 6 8 7 9 8 9 1 4 7 6 4 5

+6 +8 +8 +5 +4 +4 +5 +5 +7 +3 +5 +4 +3

02 5 22 0 12 5 06 1 18 4 13 2

2 5 3 4 1 2 5

7 2 4 1 5 8 0



1 4 2 5 3 5 3

8 8 2 3 1 1 3 5 4 3 3 1 0

RRA B RRA B RRC EW LB EA LB EA SR: LB RRA B LB LB

1 4 4 1 1 2 .3 0 4 4 0 2 3 .4 5 5 1 .8 6 8 9 5 1 0 .7 9 7 7 4 7 143: 0 .4 9 5 5 8 9 1 1 1 1

max

4 3 2 8 2 .4 5 2

B NSV 9475 RRAB 0.526203 B NSV 9642 RRAB 0.467784 B
15.5 16 16.5 0 0.5 1 14.5 15 15.5

NSV 9704 RRC 0.320757

14

14.2 14.4 14.6

16 0 0.5 1

14.8 0 0.5 1

B
15.4 15.6 15.8 16 16.2

NSV 9721 EW 0.255458

B
15 15.2 15.4 15.6 15.8

NSV 9740 EA 1.86895

B
14.2 14.4 14.6 14.8

V947 Oph EA 0.797747

0

0.5

1

0

0.5

1

0

0.5

1

14.6 14.8 15 15.2 15.4

B

NSV 10129 SR: 143

B V2087 Oph RRAB 0.495589
15 15.5 16 16.5

0

0.5

1

0

0.5

1

Fig. 5. Phased light curves for the known regular variable st ars in the field that were investigated in this study.

5.

Conclusions

We have successfully developed necessary techniques to digitize plates of the Moscow collection, search for variable stars using digital images and perform photographic photometry. These techniques will be further imp roved and repeatedly used in our future research. Its results will be published se parately and presented at our web site www.sai.msu.su/gcvs/digit/digit.html


292

A. A.

This study resulted in the discovery and characterization o f 274 new variable stars of different types, periodic and aperiodic, fast and s low, in a 10 â 5 field, demonstrating the effectiveness of our approach. Addition ally, we found about 30 variability suspects for follow-up CCD studies, confirme d variability of 11 stars from the NSV catalog, and determined ephemerides for 2 GCVS s tars. It is worth noting that all these results were achieved for a field rather well-studied for stellar variability. Acknowledgements. We wish to thank D. Nasonov, S. Nazarov, and especially A. Lebedev for their contribution to development of VA S T software. Thanks are due to A. Belinsky for his support of our scanning project. We are grateful to V.P. Goranskij for providing us access to his software for pe riodicity analysis. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France and the International Variable Star Index (VSX) oper ated by the AAVSO. Our study was supported, in part, by the Russian Foundation f or Basic Research (grants 05-02-16688 and 08-02-00375) and by the Program of Support for Leading Scientific Schools of Russia (grant NSh-433.2008.2). REFERENCES
Antipin, S.V., et al. 2007, Perem. Zvezdy, 27, 8. Antipin, S.V., Shugarov, S.Yu., and Kroll, P. 2002, IBVS, 5246. Bertin, E., and Arnouts, S. 1996, A&AS, 117, 393. Brunzendorf, J., and Meusinger, H. 2001, A&A, 373, 38. Cutri, R.M., et al. 2003, "The 2MASS All-Sky Catalog of Point Sources", Centre de DonnÈes Astronomiques de Strasbourg, II/246. Devor, J. 2005, ApJ, 628, 411. GÆtz, W., Huth, H., and Hoffmeister, C. 1957, VerÆff. Sternw. Sonneberg, 4, H. 2. Henze, M., Meusinger, H., and Pietsch, W. 2008, A&A, 477, 67. Kolesnikova, D., et al. 2007a, Perem. Zvezdy Suppl., 7, 3. Kolesnikova, D., et al. 2007b, Perem. Zvezdy Suppl., 7, 24. KovÀcs, G., Zucker, S., and Mazeh, T. 2002, A&A, 391, 369. Manannikov, A.L., et al. 2006, Perem. Zvezdy Suppl., 6, 34. Monet, D., et al. 1998, USNO-A V2.0. "A Catalog of Astrometric Standards", Wa shington: US Naval Observatory, 11 CD ROMs. ´ Pojmanski, G. 2002, Acta Astron., 52, 397. Samus, N.N. 1983, Mitt. VerÄnd. Sterne, 9, 87. Samus, N.N., et al. 2006, in: "Virtual Observatory: Plate Content Digitization, Archive Mining, Image Sequence Processing", Proc. Internat. Workshop, Eds., M. Tsvetkov et al. Sofia: Heron Press, p. 103. Scholz, R.-D., Meusinger, H., and Irwin, M. 1997, A&A, 325, 457. Schwarzenberg-Czerny, A. 1989, A&A, 210, 174. Schwarzenberg-Czerny, A. 1996, ApJ, 460, L107. Sokolovsky, K.V. 2006, Perem. Zvezdy Suppl., 6, 18. Sokolovsky, K., and Lebedev, A. 2005, in: "12th Young Scientists' Conference on Astronomy and Space Physics", Kyiv, Ukraine, April 19-23, 2005, Eds., A. Simon and A. Golovin, p. 79. Vogt, N., Kroll, P., and Splittgerber, E. 2004, A&A, 428, 925. Welch, D.L., and Stetson, P.B. 1993, AJ, 105, 1813. Wozniak, P.R., et al. 2004, AJ, 127, 2436. ´