Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.ipa.nw.ru/conference/wpltn2012/docs/25/1620%20volpyan.pdf
Äàòà èçìåíåíèÿ: Mon Oct 1 12:16:30 2012
Äàòà èíäåêñèðîâàíèÿ: Sun Feb 3 17:53:23 2013
Êîäèðîâêà:

Ïîèñêîâûå ñëîâà: þæíàÿ àòëàíòè÷åñêàÿ àíîìàëèÿ

. . , . . , . .
« «» . . . », « -»


MAGNETRON SPUTTERED OPTICAL COATINGS FOR LASER RANGING SYSTEMS
Volpian O.D., Obod Yu.. *, Shkatula S.V. OJSC"M. F. Stelmakh Research & Development Institute-Polyus" Scientific-Manufacturing Enterprise "Fotron-Auto Ltd"*



- (->10) (>0,3), (R1>99,99%; R2<0,1%); 10å 0.5 >0,7 1 <<5 ); - ( , «» ); - (, ) 100 m; - 0,9 /2 (=1,06 ; t=10 ); (, , ) - ( ) - ( . .) - ; - , , 0,005;


PROSPECTIVE REQUIREMENTS TO OPTICAL COATINGS AND TECHNOLOGY OF THEIR MANUFACTURING
coating spectral characteristics - superwide operating spectrum (term-init>10init) and operating angles (>0,3), hard-driving modulation of optical characteristics (R1>99,99%; R2<0,1%); high spectral resolution (10å with 0.5 >0,7 in the range of 1 um


.. .. « », 2008, 3


MAGNETRON SPUTTERING METHOD OF OPTICAL COATINGS
.. .. « », 2008, 3

Constructive schemes of impulse magnetron guns M1 and M2 - twin magnetrons Ar - argon flow

Dependences of the growth rate of Ta2O5 films (1) and SiO2 (2) on the magnetron discharge power



2,8
T
1

n
2,7 2,6 2,5 2,4 2,3 0,38 0,44 0,5 0,56 0,62 0,68 0,74 0,8 0,86 ,

2,45 2,35

1
0,9

2
0,8

3

2,25
0,7

2,15 2,05 0,3 0,360,420,480,54 0,6 0,660,720,780,84 0,9 0,96 ,

0,6 0,5 0 ,2 0,23 0 ,26 0,29 0 ,32 0 ,35 0 ,38 0 ,4 1 0 ,4 4 0 ,4 7 0,5

,

TiO2

Ta2O5

SiO2


. ., . ., . ., . . TiO2 . // , 2001, . 68, 7, . 36 -39. . ., . ., . ., . . Ta2O5, .// , 2003, .70, 9, . 56 ­ 60. . ., . , . . SiO2, .// . 2004, .71, 7, .81-84.


MAGNETRON SPUTTERED OPTICAL COATINGS
refractive index 2,8
T

n
2,7 2,6 2,5 2,4 2,3 0,38 0,44 0,5 0,56 0,62 0,68 0,74 0,8 0,86 Wavelength, um

2,45 2,35

1

1
0,9

2
0,8

3

2,25
0,7

2,15 2,05 0,3 0,360,420,480,54 0,6 0,66 0,720,780,84 0,9 0,96 Wavelength, um

0,6 0,5 0 ,2 0,23 0 ,26 0,29 0 ,32 0 ,35 0 ,38 0 ,4 1 0 ,4 4 0 ,4 7 0,5

Wavelength, um

,

TiO2

Ta2O5

SiO2

THE BANK OF BASIC THIN-FILM MATERIALS IS CREATED FOR LASER RANGING SYSTEMS
O. D. Vol'pyan and B. B. Meshkov, Yu. D. Obod, P. P. Yakovlev, Obtaining TiO2 optical films by reactive ac magnetron sputtering// J. Opt. Technol. 68 (7), July 2001, p. 494 ­ 487. O. D. Vol'pyan and B. B. Meshkov, Yu. A. Obod, P. P. Yakovlev. Optical properties of Ta2O5 films obtained by reactive magnetron sputtering, J. Opt. Technol. 70 (9), September 2003, p. 669 ­ 672. O. D. Vol'pyan and P. P. Yakovlev, Yu. A. Obod. Investigation of SiO2 optical films produced by reactive ac magnetron sputtering// J. Opt. Technol. 71 (7), July 2004, p.487 -490.



( . .) ­

(SiO2)3 D3h-

(TiO2)2 2v-

, . .


Nanocluster thin film structure
Essential applications require a combination of a preassigned modulation of the material structure (permittivity, permeability, etc.) with its supra atomic organization ­ nanoclusters.

cluster (SiO2)3 D3h- symmetry and its spectrum

cluster(TiO2)2 2v- symmetry and its spectrum

Nanocomposite films, which combine a preassigned modulation and nanocluster structures, have a high resistance to extreme conditions. They are resistant to wet marine atmosphere when applied in optical systems of the visible and mid-IR range for offshore facilities. They also have the minimal optical losses.





nH; nL

nH

THIN FILM INTERFEROMETRIC STRUCTURE
TRADITIONAL PROSPECTIVE

two materials two n: nH; nL

two materials n: nL
nanogradient (1Dz )


1Dz
4 5 z Ar 1.1 3

O2

x 2

y

1.2

A ­ , L ­ , M1, M2 ­ ; Mt1, Mt2 ­ in situ, S ­ M1 M2
: 1, 2 ­ Mt1, Mt2 ­ S ­ A - L

.., .., .., .. 2011, 10 A.I. Kuzmichev, A.B. Shvartsburg, O.D. Volpian, Y.A. Obod, P.P. Yakovlev. Polarized light in nanogradient metamaterials //Optical Complex Systems: OCS11, 5-8 September 2011, Marseille, France


MANUFACTURING OF 1Dz NANOGRADIENT OPTICAL COATINGS
A ­ gas-discharge plasma activator of oxygen, L ­ UV laser for activation of chemical processes on the substrate surface, M1, M2 ­ sputtering magnetrons with Si and Ti targets, Mt1, Mt2 ­ optical parts of monitoring in situ system, S ­ rotating substrate; the arrows over M1 and M2 show sputtered target material ejection.
TECHNOLOGY BASIC ELEMENTS: 1, 2 ­ Mt1, Mt2 ­ S ­ A - L


4 5 z Ar 1.1 3

O2

x 2

y

1.2

.., .., .., .. 2011, 10 A.I. Kuzmichev, A.B. Shvartsburg, O.D. Volpian, Y.A. Obod, P.P. Yakovlev. Polarized light in nanogradient metamaterials //Optical Complex Systems: OCS11, 5-8 September 2011, Marseille, France


1Dz
3-

Ta2O5/SiO Teor.

2

n(z) = (1+z/L1 ­ z2/L22 )-1; nmin = (1 + y2)-1; L1 = d/4y2; L2 = d/2y; y = L2/2L1
,

Exp.

Z, nm

, nm

Ta2O5/SiO

2

1Dz << ( )


EXPERIMENTS WITH NON-MONOTONIC 1Dz NANOGRADIENT REFRACTION INDEX DISTRIBUTION ALONG Z-AXIS
Transmission spectrum Project of nanogradient coating with non-monotonic distribution of n
Ta2O5/SiO
2

n(z) = (1+z/L1 ­ z2/L n
mi n

2

2 )-1

;

= (1 + y2)-1;

Teor.

L1 = d/4y2; L2 = d/2y; y = L2/2L1
Photonic barriers ensity profile is measured by X-ray reflectometry

Exp.
Z, nm

, nm

Ta2O5/SiO

2

The technology of thin-films with 1Dz gradient refractive index manufacturing for coating thickness << was developed (for photonic barriers application)


??? · (- ), · , ; · : , , , 5- - , , , .


WHAT FOR NANOGRADIENT COATINGS ARE NECESSARY??? · absence of borders between layers of different materials in gradient coatings leads to the optical losses decrease in a coating (because of the absence of scattering on roughness of layer border) · leads to the increase of its mechanical, thermal and laser resistance; · application of various refractive index profiles: linear, square, sinusoidal, 5th-degree polynomial allows to improve spectral-amplitude, angular, polarising, phase characteristics of optical and laser coatings.





POLARIZERS RESISTANT TO CHANGE OF THE WAVELENGTH AND INCIDENCE ANGLE





HYPERWIDE ANTIREFLECTING COATING

Products made of sapphire, fluorite, etc.




Ge



Ge, Si, ZnSe


HYPERWIDE ANTIREFLECTING COATINGS

Reflection of the surface of Ge substrate with the coating

Spectral characteristic resistance to layer thickness changing of coating

Products made of Ge, Si, ZnSe







MULTIPARAMETER FILTERS FOR VISIBLE AND INFRARED RANGES

novel prospective element for nanophotonics


«»


INSTALLATION FOR MAGNETRON DEPOSITION OF NANOGRADIENT OPTICAL COATINGS "ELIMAG"





1




2 3 4











­ ; ­ - ; ­


TECHNOLOGICAL PROCESS AUTOMATION
Unit of layered design coating Automatic control unit of substrates traffic Automatic unit of system for measuring optical parameters of the films Automatic management unit of ion assisting system

power unit of magnetron 1

power unit of magnetron 2

SU ILAU Automatic control unit of laser assisting system

switching unit
MU
power unit of magnetron 3

power unit of magnetron 4

Automatic control unit of vacuum system

Automatic unit of refrigeration system

Automatic control unit of gas system

SU­ substrate unit; ILAU ­ ion-laser assisting unit; MU ­ magnetron unit


« »


«Deposition Program» window


GL-
GL- in suti





()





GL-







GL- ex suti

GL



.


DEVELOPMENT OF GL-COATING

Start

Definition of the requirements for synthesized coating

Definition of parameters of GL-coating in suti and reoptimization in real time (re-engineering)

Experiment on application of single layers

Experiment on manufacturing test layers

Manufacturing of GL-coating

Ellipsometric and photometric data

Ellipsometric and photometric data

Definition of optical properties of single layers

Investigation of parameters of GL-coating ex suti

Computer synthesis of GL- coating

Optical properties of layers

Optical properties of layers. Errors in layer thicknesses



:

-, , ; .
:

30 ­ 40% 10 ­ 15%
:

; · ; · · , .
·


ADVANTAGES OF NANOGRADIENT OPTICAL COATINGS
NANOGRADIENT COATINGS hyper-broadband wide-angle small optical losses NANOGRADIENT COATING DEVICES: increase the energy efficiency of laser ranging and location devices by 30- 40% increase the sensitivity of laser devices to detect and track by 10 - 15% GRADIENT MAGNETRON SPUTTERED COATINGS TECHNOLOGY: ·fully automated process ·high productivity ·high yield rate ·high resistance to mechanical, thermal and to humid environments





WE THANK FOR ATTENTION