Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.chem.msu.ru/rus/teaching/eremin1/1-2.html
Дата изменения: Unknown
Дата индексирования: Sun Apr 10 07:43:55 2016
Кодировка: Windows-1251

Поисковые слова: совершенный газ
Задачи по физической химии. Часть 1.Химическая термодинамика. Первый закон термодинамики
ChemNet
 
Химический факультет МГУ

Учебные материалы по физической химии
Задачи по физической химии.Часть 1.Химическая термодинамика

2. Первый закон термодинамики

Первый закон (первое начало) термодинамики - это, фактически, закон сохранения энергии. Он утверждает, что

энергия изолированной системы постоянна. В неизолированной системе энергия может изменяться за счет: а) совершения работы над окружающей средой; б) теплообмена с окружающей средой.

Для описания этих изменений вводят функцию состояния - внутреннюю энергию U и две функции перехода - теплоту Q и работу A. Математическая формулировка первого закона:

dU = Q - A (дифференциальная форма) (2.1)

U = Q - A (интегральная форма) (2.2)

Буква в уравнении (2.1) отражает тот факт, что Q и A - функции перехода и их бесконечно малое изменение не является полным дифференциалом.

В уравнениях (2.1) и (2.2) знаки теплоты и работы выбраны следующим образом. Теплота считается положительной, если она передается системе. Напротив, работа считается положительной, если она совершается системой над окружающей средой.

Существуют разные виды работы: механическая, электрическая, магнитная, поверхностная и др. Бесконечно малую работу любого вида можно представить как произведение обобщенной силы на приращение обобщенной координаты, например:

Aмех = p. dV; Aэл = . ; Aпов = . dW (2.3)

( - электрический потенциал, e - заряд, - поверхностное натяжение, W - площадь поверхности). С учетом (2.3), дифференциальное выражение первого закона можно представить в виде:

dU = Q - p. dV Aнемех (2.4)

В дальнейшем изложении немеханическими видами работы мы будем, по умолчанию, пренебрегать.

Механическую работу, производимую при расширении против внешнего давления pex, рассчитывают по формуле:

A = (2.5)

Если процесс расширения обратим, то внешнее давление отличается от давления системы (например, газа) на бесконечно малую величину: pex = pin - dp и в формулу (2.5) можно подставлять давление самой системы, которое определяется по уравнению состояния.

Проще всего рассчитывать работу, совершаемую идеальным газом, для которого известно уравнение состояния p = nRT / V (табл. 1).

 

Таблица 1. Работа идеального газа в некоторых процессах расширения V1 V2:

Процесс

A

Расширение в вакуум

0

Расширение против постоянного внешнего давления p

p (V2-V1)

Изотермическое обратимое расширение

nRT ln(V2/V1)

Адиабатическое обратимое расширение

nCV(T1-T2)

При обратимом процессе совершаемая работа максимальна.

Теплота может переходить в систему при нагревании. Для расчета теплоты используют понятие теплоемкости, которая определяется следующим образом:

C = (2.6)

Если нагревание происходит при постоянном объеме или давлении, то теплоемкость обозначают соответствующим нижним индексом:

CV = ; Cp = . (2.7)

Из определения (2.6) следует, что конечную теплоту, полученную системой при нагревании, можно рассчитать как интеграл:

Q = (2.8)

Теплоемкость - экспериментально измеряемая экстенсивная величина. В термодинамических таблицах приведены значения теплоемкости при 298 К и коэффициенты, описывающие ее зависимость от температуры. Для некоторых веществ теплоемкость можно также оценить теоретически методами статистической термодинамики (гл. 12). Так, при комнатной температуре для одноатомных идеальных газов мольная теплоемкость CV = 3/2 R, для двухатомных газов CV = 5/2 R.

Теплоемкость определяется через теплоту, переданную системе, однако ее можно связать и с изменением внутренней энергии. Так, при постоянном объеме механическая работа не совершается и теплота равна изменению внутренней энергии: QV = dU, поэтому

CV = . (2.9)

При постоянном давлении теплота равна изменению другой функции состояния, которую называют энтальпией:

Qp = dU + pdV = d (U+pV) = dH, (2.10)

где H = U+pV - энтальпия системы. Из (2.10) следует, что теплоемкость Cp определяет зависимость энтальпии от температуры.

Cp = . (2.11)

Из соотношения между внутренней энергией и энтальпией следует, что для моля идеального газа

Cp - CV = R. (2.12)

Внутреннюю энергию можно рассматривать, как функцию температуры и объема:

(2.13)

Для идеального газа экспериментально обнаружено, что внутренняя энергия не зависит от объема, , откуда можно получить калорическое уравнение состояния:

dU = CV dT,

(2.14)

В изотермических процессах с участием идеального газа внутренняя энергия не изменяется, и работа расширения происходит только за счет поглощаемой теплоты.

Возможен и совсем иной процесс. Если в течение процесса отсутствует теплообмен с окружающей средой ( Q = 0), то такой процесс называют адиабатическим. В адиабатическом процессе работа может совершаться только за счет убыли внутренней энергии. Работа обратимого адиабатического расширения идеального газа:

A = - U = nCV (T1-T2) (2.15)

(n - число молей, CV - мольная теплоемкость). Эту работу можно также выразить через начальные и конечные давление и объем:

A = (2.16)

где = Cp / CV.

При обратимом адиабатическом расширении идеального газа давление и объем связаны соотношением (уравнением адиабаты):

pV = const. (2.17)

В уравнении (2.17) важны два момента: во-первых, это уравнение процесса, а не уравнение состояния; во-вторых, оно справедливо только для обратимого адиабатического процесса. Это же уравнение можно записать в эквивалентном виде:

TV -1 = const, (2.18)

T p1- = const. (2.19)

ПРИМЕРЫ

Пример 2-1. Рассчитайте изменение внутренней энергии гелия (одноатомный идеальный газ) при изобарном расширении от 5 до 10 л под давлением 196 кПа.

Решение. p1 = p2 = 196 кПа, V1 = 5 л, V2 = 10 л. Начальная и конечная температуры: T1 = p1V1 / nR, T2 = p2V2 / nR. Изменение внутренней энергии идеального газа определяется только начальной и конечной температурой (CV = 3/2 nR - идеальный одноатомный газ):

U = CV (T2-T1) = 3/2 nR (T2-T1) = 3/2 (p2V2 - p1V1) = 3/2 (196. 103) (10-5). 10-3 =
= 1470 Дж.

Ответ. 1470 Дж.

 

Пример 2-2. Используя первый закон и определение теплоемкости, найдите разность изобарной и изохорной теплоемкостей для произвольной термодинамической системы.

Решение. В определение теплоемкости (2.6) подставим дифференциальное представление первого закона (2.1) и используем соотношение (2.13) для внутренней энергии как функции температуры и объема:

Отсюда при постоянном давлении получаем:

 

Пример 2-3. Один моль ксенона, находящийся при 25 оС и 2 атм, расширяется адиабатически: а) обратимо до 1 атм, б) против давления 1 атм. Какой будет конечная температура в каждом случае?

Решение. а) Исходный объем ксенона (n = 1):

V1 = nRT1 / p1 = 0.082. 298 / 2 = 12.2 л.

Конечный объем можно найти из уравнения адиабаты (для одноатомного идеального газа = Cp / CV = 5/3):

p1V15/3 = p2V25/3

V2 = V1 . (p1/p2)3/5 = 12.2 . 23/5 = 18.5 л.

Конечную температуру находим по уравнению состояния идеального газа (p2 = 1 атм):

T2 = p2V2 / nR = 18.5 / 0.082 = 225 К.

б) При необратимом расширении против постоянного внешнего давления уравнение адиабаты неприменимо, поэтому надо воспользоваться первым законом термодинамики. Работа совершается за счет убыли внутренней энергии:

A = - U = nCV (T1-T2),

где n = 1, CV = 3/2 R (одноатомный идеальный газ). Работа расширения против постоянного внешнего давления p2 равна:

A = p2 (V2-V1) = nRT2 - p2V1.

Приравнивая последние два выражения, находим температуру T2:

T2 = (nCVT1 + p2V1) / (nCV + nR) = 238 К.

Температура выше, чем при обратимом расширении, т.к. в обратимом случае совершается бМльшая работа, расходуется больше внутренней энергии и температура понижается на большую величину.

Ответ. а) 225 К; б) 238 К.

 

Пример 2-4. Один моль водяных паров обратимо и изотермически сконденсировали в жидкость при 100 оС. Рассчитайте работу, теплоту, изменение внутренней энергии и энтальпии в этом процессе. Удельная теплота испарения воды при 100 оС равна 2260 Дж/г.

Решение. В процессе

H2O(г) H2O(ж)

произошло обратимое сжатие газа при постоянном давлении p = 1 атм от объема V1 = nRT / p = 0.082. 373 = 30.6 л до объема одного моля жидкой воды V2 ~ 0.018 л. Работа сжатия при постоянном давлении равна:

A = p (V2-V1) -pV1 = -101.3 кПа 30.6 л = -3100 Дж.

При испарении одного моля воды затрачивается теплота 2260 Дж/г 18 г = 40700 Дж, поэтому при конденсации одного моля воды эта теплота, напротив, выделяется в окружающую среду:

Q = -40700 Дж.

Изменение внутренней энергии можно рассчитать по первому закону:

U = Q - A = -40700 - (-3100) = -37600 Дж,

а изменение энтальпии - через изменение внутренней энергии:

H = U + (pV) = U + p V = U + A = Q = -40700 Дж.

Изменение энтальпии равно теплоте, т.к. процесс происходит при постоянном давлении.

Ответ. A = -3100 Дж, Q = H = -40700 Дж, U = -37600 Дж.

ЗАДАЧИ

2-1. Газ, расширяясь от 10 до 16 л при постоянном давлении 101.3 кПа, поглощает 126 Дж теплоты. Определите изменение внутренней энергии газа.

 

2-2. Определите изменение внутренней энергии, количество теплоты и работу, совершаемую при обратимом изотермическом расширении азота от 0.5 до 4 м3 (начальные условия: температура 26.8 оС, давление 93.2 кПа).

 

2-3. Один моль идеального газа, взятого при 25 oC и 100 атм, расширяется обратимо и изотермически до 5 атм. Рассчитайте работу, поглощенную теплоту, U и H.

 

2-4. Рассчитайте изменение энтальпии кислорода (идеальный газ) при изобарном расширении от 80 до 200 л при нормальном атмосферном давлении.

 

2-5. Какое количество теплоты необходимо для повышения температуры 16 г кислорода от 300 до 500 К при давлении 1 атм? Как при этом изменится внутренняя энергия?

 

2-6. Объясните, почему для любой термодинамической системы Cp > CV.

 

2-7. Чайник, содержащий 1 кг кипящей воды, нагревают до полного испарения при нормальном давлении. Определите A, Q, U, H для этого процесса. Мольная теплота испарения воды 40.6 кДж/моль.

 

2-8. Определите конечную температуру и работу, необходимую для адиабатического сжатия азота от 10 л до 1 л, если начальные температура и давление равны 26.8 оС и 101.3 кПа, соответственно.

 

2-9. Три моля идеального одноатомного газа (CV = 3.0 кал/(моль. К)), находящегося при T1 = 350 K и P1 = 5 атм, обратимо и адиабатически расширяются до давления P2 = 1 атм. Рассчитайте конечные температуру и объем, а также совершенную работу и изменение внутренней энергии и энтальпии в этом процессе.

 

2-10. Система содержит 0.5 моль идеального одноатомного газа (CV = 3.0 кал/(моль. К)) при P1 = 10 атм и V1 = 1 л. Газ расширяется обратимо и адиабатически до давления P2 = 1 атм. Рассчитайте начальную и конечную температуру, конечный объем, совершенную работу, а также изменение внутренней энергии и энтальпии в этом процессе. Рассчитайте эти величины для соответствующего изотермического процесса.

 

2-11. Рассчитайте количество теплоты, необходимое для нагревания воздуха в квартире общим объемом 600 м3 от 20 оС до 25 оС. Примите, что воздух - это идеальный двухатомный газ, а давление при исходной температуре нормальное. Найдите U и H для процесса нагревания воздуха.

 

2-12. Человеческий организм в среднем выделяет 104 кДж в день благодаря метаболическим процессам. Основной механизм потери этой энергии - испарение воды. Какую массу воды должен ежедневно испарять организм для поддержания постоянной температуры? Удельная теплота испарения воды - 2260 Дж/г. На сколько градусов повысилась бы температура тела, если бы организм был изолированной системой? Примите, что средняя масса человека - 65 кг, а теплоемкость равна теплоемкости жидкой воды.

 

2-13. Один моль паров брома обратимо и изотермически сконденсировали в жидкость при 59 оС. Рассчитайте работу, теплоту, изменение внутренней энергии и энтальпии в этом процессе. Удельная теплота испарения брома при 59 оС равна 184.1 Дж/г.

 

2-14. Один моль идеального одноатомного газа вступает в следующий замкнутый цикл:

Процесс 1 2 - изотермический, 3 1 - адиабатический. Рассчитайте объемы состояний 2 и 3, а также температуры состояний 1, 2 и 3, считая стадии 1 2 и 3 1 обратимыми. Рассчитайте U и H для каждой стадии.

 

2-15. Придумайте циклический процесс с идеальным газом, состоящий из четырех стадий. Изобразите этот процесс в координатах p - V. Рассчитайте полное изменение внутренней энергии, а также теплоту и совершенную газом работу.

 

2-16. Один моль фтороуглерода расширяется обратимо и адиабатически вдвое по объему, при этом температура падает от 298.15 до 248.44 К. Чему равно значение CV?

 

2-17. Докажите соотношение (2.16) для работы обратимого адиабатического процесса.

 

2-18. Один моль метана, взятый при 25 оС и 1 атм, нагрет при постоянном давлении до удвоения объема. Мольная теплоемкость метана дается выражением:

Cp = 5.34 + 0.0115. T кал/(моль. К).

Рассчитайте U и H для этого процесса. Метан можно считать идеальным газом.

 

2-19. Выведите уравнение для обратимого адиабатического сжатия неидеального газа, если уравнение состояния одного моля газа имеет вид:

p (V-b) = RT.

 

2-20*. Используя уравнение состояния и первый закон термодинамики, выведите уравнение адиабаты для газа Ван-дер-Ваальса.




Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается  копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору