Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.astro.louisville.edu/software/sbig/archive/xmccd-4.1/xmccd-4.1e/libcfitsio/libcfitsio-3.310/eval.y
Дата изменения: Thu Sep 3 20:08:25 2009
Дата индексирования: Sun Apr 10 06:15:38 2016
Кодировка:

Поисковые слова: закон вина
%{
/************************************************************************/
/* */
/* CFITSIO Lexical Parser */
/* */
/* This file is one of 3 files containing code which parses an */
/* arithmetic expression and evaluates it in the context of an input */
/* FITS file table extension. The CFITSIO lexical parser is divided */
/* into the following 3 parts/files: the CFITSIO "front-end", */
/* eval_f.c, contains the interface between the user/CFITSIO and the */
/* real core of the parser; the FLEX interpreter, eval_l.c, takes the */
/* input string and parses it into tokens and identifies the FITS */
/* information required to evaluate the expression (ie, keywords and */
/* columns); and, the BISON grammar and evaluation routines, eval_y.c, */
/* receives the FLEX output and determines and performs the actual */
/* operations. The files eval_l.c and eval_y.c are produced from */
/* running flex and bison on the files eval.l and eval.y, respectively. */
/* (flex and bison are available from any GNU archive: see www.gnu.org) */
/* */
/* The grammar rules, rather than evaluating the expression in situ, */
/* builds a tree, or Nodal, structure mapping out the order of */
/* operations and expression dependencies. This "compilation" process */
/* allows for much faster processing of multiple rows. This technique */
/* was developed by Uwe Lammers of the XMM Science Analysis System, */
/* although the CFITSIO implementation is entirely code original. */
/* */
/* */
/* Modification History: */
/* */
/* Kent Blackburn c1992 Original parser code developed for the */
/* FTOOLS software package, in particular, */
/* the fselect task. */
/* Kent Blackburn c1995 BIT column support added */
/* Peter D Wilson Feb 1998 Vector column support added */
/* Peter D Wilson May 1998 Ported to CFITSIO library. User */
/* interface routines written, in essence */
/* making fselect, fcalc, and maketime */
/* capabilities available to all tools */
/* via single function calls. */
/* Peter D Wilson Jun 1998 Major rewrite of parser core, so as to */
/* create a run-time evaluation tree, */
/* inspired by the work of Uwe Lammers, */
/* resulting in a speed increase of */
/* 10-100 times. */
/* Peter D Wilson Jul 1998 gtifilter(a,b,c,d) function added */
/* Peter D Wilson Aug 1998 regfilter(a,b,c,d) function added */
/* Peter D Wilson Jul 1999 Make parser fitsfile-independent, */
/* allowing a purely vector-based usage */
/* Craig B Markwardt Jun 2004 Add MEDIAN() function */
/* Craig B Markwardt Jun 2004 Add SUM(), and MIN/MAX() for bit arrays */
/* Craig B Markwardt Jun 2004 Allow subscripting of nX bit arrays */
/* Craig B Markwardt Jun 2004 Implement statistical functions */
/* NVALID(), AVERAGE(), and STDDEV() */
/* for integer and floating point vectors */
/* Craig B Markwardt Jun 2004 Use NULL values for range errors instead*/
/* of throwing a parse error */
/* Craig B Markwardt Oct 2004 Add ACCUM() and SEQDIFF() functions */
/* Craig B Markwardt Feb 2005 Add ANGSEP() function */
/* Craig B Markwardt Aug 2005 CIRCLE, BOX, ELLIPSE, NEAR and REGFILTER*/
/* functions now accept vector arguments */
/* Craig B Markwardt Sum 2006 Add RANDOMN() and RANDOMP() functions */
/* Craig B Markwardt Mar 2007 Allow arguments to RANDOM and RANDOMN to*/
/* determine the output dimensions */
/* Craig B Markwardt Aug 2009 Add substring STRMID() and string search*/
/* STRSTR() functions; more overflow checks*/
/* */
/************************************************************************/

#define APPROX 1.0e-7
#include "eval_defs.h"
#include "region.h"
#include

#include

#ifndef alloca
#define alloca malloc
#endif

/* Shrink the initial stack depth to keep local data <32K (mac limit) */
/* yacc will allocate more space if needed, though. */
#define YYINITDEPTH 100

/***************************************************************/
/* Replace Bison's BACKUP macro with one that fixes a bug -- */
/* must update state after popping the stack -- and allows */
/* popping multiple terms at one time. */
/***************************************************************/

#define YYNEWBACKUP(token, value) \
do \
if (yychar == YYEMPTY ) \
{ yychar = (token); \
memcpy( &yylval, &(value), sizeof(value) ); \
yychar1 = YYTRANSLATE (yychar); \
while (yylen--) YYPOPSTACK; \
yystate = *yyssp; \
goto yybackup; \
} \
else \
{ yyerror ("syntax error: cannot back up"); YYERROR; } \
while (0)

/***************************************************************/
/* Useful macros for accessing/testing Nodes */
/***************************************************************/

#define TEST(a) if( (a)<0 ) YYERROR
#define SIZE(a) gParse.Nodes[ a ].value.nelem
#define TYPE(a) gParse.Nodes[ a ].type
#define OPER(a) gParse.Nodes[ a ].operation
#define PROMOTE(a,b) if( TYPE(a) > TYPE(b) ) \
b = New_Unary( TYPE(a), 0, b ); \
else if( TYPE(a) < TYPE(b) ) \
a = New_Unary( TYPE(b), 0, a );

/***** Internal functions *****/

#ifdef __cplusplus
extern "C" {
#endif

static int Alloc_Node ( void );
static void Free_Last_Node( void );
static void Evaluate_Node ( int thisNode );

static int New_Const ( int returnType, void *value, long len );
static int New_Column( int ColNum );
static int New_Offset( int ColNum, int offset );
static int New_Unary ( int returnType, int Op, int Node1 );
static int New_BinOp ( int returnType, int Node1, int Op, int Node2 );
static int New_Func ( int returnType, funcOp Op, int nNodes,
int Node1, int Node2, int Node3, int Node4,
int Node5, int Node6, int Node7 );
static int New_FuncSize( int returnType, funcOp Op, int nNodes,
int Node1, int Node2, int Node3, int Node4,
int Node5, int Node6, int Node7, int Size);
static int New_Deref ( int Var, int nDim,
int Dim1, int Dim2, int Dim3, int Dim4, int Dim5 );
static int New_GTI ( char *fname, int Node1, char *start, char *stop );
static int New_REG ( char *fname, int NodeX, int NodeY, char *colNames );
static int New_Vector( int subNode );
static int Close_Vec ( int vecNode );
static int Locate_Col( Node *this );
static int Test_Dims ( int Node1, int Node2 );
static void Copy_Dims ( int Node1, int Node2 );

static void Allocate_Ptrs( Node *this );
static void Do_Unary ( Node *this );
static void Do_Offset ( Node *this );
static void Do_BinOp_bit ( Node *this );
static void Do_BinOp_str ( Node *this );
static void Do_BinOp_log ( Node *this );
static void Do_BinOp_lng ( Node *this );
static void Do_BinOp_dbl ( Node *this );
static void Do_Func ( Node *this );
static void Do_Deref ( Node *this );
static void Do_GTI ( Node *this );
static void Do_REG ( Node *this );
static void Do_Vector ( Node *this );

static long Search_GTI ( double evtTime, long nGTI, double *start,
double *stop, int ordered );

static char saobox (double xcen, double ycen, double xwid, double ywid,
double rot, double xcol, double ycol);
static char ellipse(double xcen, double ycen, double xrad, double yrad,
double rot, double xcol, double ycol);
static char circle (double xcen, double ycen, double rad,
double xcol, double ycol);
static char bnear (double x, double y, double tolerance);
static char bitcmp (char *bitstrm1, char *bitstrm2);
static char bitlgte(char *bits1, int oper, char *bits2);

static void bitand(char *result, char *bitstrm1, char *bitstrm2);
static void bitor (char *result, char *bitstrm1, char *bitstrm2);
static void bitnot(char *result, char *bits);
static int cstrmid(char *dest_str, int dest_len,
char *src_str, int src_len, int pos);

static void yyerror(char *msg);

#ifdef __cplusplus
}
#endif

%}

%union {
int Node; /* Index of Node */
double dbl; /* real value */
long lng; /* integer value */
char log; /* logical value */
char str[MAX_STRLEN]; /* string value */
}

%token BOOLEAN /* First 3 must be in order of */
%token LONG /* increasing promotion for later use */
%token DOUBLE
%token STRING
%token BITSTR
%token FUNCTION
%token BFUNCTION /* Bit function */
%token IFUNCTION /* Integer function */
%token GTIFILTER
%token REGFILTER
%token COLUMN
%token BCOLUMN
%token SCOLUMN
%token BITCOL
%token ROWREF
%token NULLREF
%token SNULLREF

%type expr
%type bexpr
%type sexpr
%type bits
%type vector
%type bvector

%left ',' '=' ':' '{' '}'
%right '?'
%left OR
%left AND
%left EQ NE '~'
%left GT LT LTE GTE
%left '+' '-' '%'
%left '*' '/'
%left '|' '&'
%right POWER
%left NOT
%left INTCAST FLTCAST
%left UMINUS
%left '['

%right ACCUM DIFF

%%

lines: /* nothing ; was | lines line */
| lines line
;

line: '\n' {}
| expr '\n'
{ if( $1<0 ) {
yyerror("Couldn't build node structure: out of memory?");
YYERROR; }
gParse.resultNode = $1;
}
| bexpr '\n'
{ if( $1<0 ) {
yyerror("Couldn't build node structure: out of memory?");
YYERROR; }
gParse.resultNode = $1;
}
| sexpr '\n'
{ if( $1<0 ) {
yyerror("Couldn't build node structure: out of memory?");
YYERROR; }
gParse.resultNode = $1;
}
| bits '\n'
{ if( $1<0 ) {
yyerror("Couldn't build node structure: out of memory?");
YYERROR; }
gParse.resultNode = $1;
}
| error '\n' { yyerrok; }
;

bvector: '{' bexpr
{ $$ = New_Vector( $2 ); TEST($$); }
| bvector ',' bexpr
{
if( gParse.Nodes[$1].nSubNodes >= MAXSUBS ) {
$1 = Close_Vec( $1 ); TEST($1);
$$ = New_Vector( $1 ); TEST($$);
} else {
$$ = $1;
}
gParse.Nodes[$$].SubNodes[ gParse.Nodes[$$].nSubNodes++ ]
= $3;
}
;

vector: '{' expr
{ $$ = New_Vector( $2 ); TEST($$); }
| vector ',' expr
{
if( TYPE($1) < TYPE($3) )
TYPE($1) = TYPE($3);
if( gParse.Nodes[$1].nSubNodes >= MAXSUBS ) {
$1 = Close_Vec( $1 ); TEST($1);
$$ = New_Vector( $1 ); TEST($$);
} else {
$$ = $1;
}
gParse.Nodes[$$].SubNodes[ gParse.Nodes[$$].nSubNodes++ ]
= $3;
}
| vector ',' bexpr
{
if( gParse.Nodes[$1].nSubNodes >= MAXSUBS ) {
$1 = Close_Vec( $1 ); TEST($1);
$$ = New_Vector( $1 ); TEST($$);
} else {
$$ = $1;
}
gParse.Nodes[$$].SubNodes[ gParse.Nodes[$$].nSubNodes++ ]
= $3;
}
| bvector ',' expr
{
TYPE($1) = TYPE($3);
if( gParse.Nodes[$1].nSubNodes >= MAXSUBS ) {
$1 = Close_Vec( $1 ); TEST($1);
$$ = New_Vector( $1 ); TEST($$);
} else {
$$ = $1;
}
gParse.Nodes[$$].SubNodes[ gParse.Nodes[$$].nSubNodes++ ]
= $3;
}
;

expr: vector '}'
{ $$ = Close_Vec( $1 ); TEST($$); }
;

bexpr: bvector '}'
{ $$ = Close_Vec( $1 ); TEST($$); }
;

bits: BITSTR
{
$$ = New_Const( BITSTR, $1, strlen($1)+1 ); TEST($$);
SIZE($$) = strlen($1); }
| BITCOL
{ $$ = New_Column( $1 ); TEST($$); }
| BITCOL '{' expr '}'
{
if( TYPE($3) != LONG
|| OPER($3) != CONST_OP ) {
yyerror("Offset argument must be a constant integer");
YYERROR;
}
$$ = New_Offset( $1, $3 ); TEST($$);
}
| bits '&' bits
{ $$ = New_BinOp( BITSTR, $1, '&', $3 ); TEST($$);
SIZE($$) = ( SIZE($1)>SIZE($3) ? SIZE($1) : SIZE($3) ); }
| bits '|' bits
{ $$ = New_BinOp( BITSTR, $1, '|', $3 ); TEST($$);
SIZE($$) = ( SIZE($1)>SIZE($3) ? SIZE($1) : SIZE($3) ); }
| bits '+' bits
{
if (SIZE($1)+SIZE($3) >= MAX_STRLEN) {
yyerror("Combined bit string size exceeds " MAX_STRLEN_S " bits");
YYERROR;
}
$$ = New_BinOp( BITSTR, $1, '+', $3 ); TEST($$);
SIZE($$) = SIZE($1) + SIZE($3);
}
| bits '[' expr ']'
{ $$ = New_Deref( $1, 1, $3, 0, 0, 0, 0 ); TEST($$); }
| bits '[' expr ',' expr ']'
{ $$ = New_Deref( $1, 2, $3, $5, 0, 0, 0 ); TEST($$); }
| bits '[' expr ',' expr ',' expr ']'
{ $$ = New_Deref( $1, 3, $3, $5, $7, 0, 0 ); TEST($$); }
| bits '[' expr ',' expr ',' expr ',' expr ']'
{ $$ = New_Deref( $1, 4, $3, $5, $7, $9, 0 ); TEST($$); }
| bits '[' expr ',' expr ',' expr ',' expr ',' expr ']'
{ $$ = New_Deref( $1, 5, $3, $5, $7, $9, $11 ); TEST($$); }
| NOT bits
{ $$ = New_Unary( BITSTR, NOT, $2 ); TEST($$); }

| '(' bits ')'
{ $$ = $2; }
;

expr: LONG
{ $$ = New_Const( LONG, &($1), sizeof(long) ); TEST($$); }
| DOUBLE
{ $$ = New_Const( DOUBLE, &($1), sizeof(double) ); TEST($$); }
| COLUMN
{ $$ = New_Column( $1 ); TEST($$); }
| COLUMN '{' expr '}'
{
if( TYPE($3) != LONG
|| OPER($3) != CONST_OP ) {
yyerror("Offset argument must be a constant integer");
YYERROR;
}
$$ = New_Offset( $1, $3 ); TEST($$);
}
| ROWREF
{ $$ = New_Func( LONG, row_fct, 0, 0, 0, 0, 0, 0, 0, 0 ); }
| NULLREF
{ $$ = New_Func( LONG, null_fct, 0, 0, 0, 0, 0, 0, 0, 0 ); }
| expr '%' expr
{ PROMOTE($1,$3); $$ = New_BinOp( TYPE($1), $1, '%', $3 );
TEST($$); }
| expr '+' expr
{ PROMOTE($1,$3); $$ = New_BinOp( TYPE($1), $1, '+', $3 );
TEST($$); }
| expr '-' expr
{ PROMOTE($1,$3); $$ = New_BinOp( TYPE($1), $1, '-', $3 );
TEST($$); }
| expr '*' expr
{ PROMOTE($1,$3); $$ = New_BinOp( TYPE($1), $1, '*', $3 );
TEST($$); }
| expr '/' expr
{ PROMOTE($1,$3); $$ = New_BinOp( TYPE($1), $1, '/', $3 );
TEST($$); }
| expr POWER expr
{ PROMOTE($1,$3); $$ = New_BinOp( TYPE($1), $1, POWER, $3 );
TEST($$); }
| '+' expr %prec UMINUS
{ $$ = $2; }
| '-' expr %prec UMINUS
{ $$ = New_Unary( TYPE($2), UMINUS, $2 ); TEST($$); }
| '(' expr ')'
{ $$ = $2; }
| expr '*' bexpr
{ $3 = New_Unary( TYPE($1), 0, $3 );
$$ = New_BinOp( TYPE($1), $1, '*', $3 );
TEST($$); }
| bexpr '*' expr
{ $1 = New_Unary( TYPE($3), 0, $1 );
$$ = New_BinOp( TYPE($3), $1, '*', $3 );
TEST($$); }
| bexpr '?' expr ':' expr
{
PROMOTE($3,$5);
if( ! Test_Dims($3,$5) ) {
yyerror("Incompatible dimensions in '?:' arguments");
YYERROR;
}
$$ = New_Func( 0, ifthenelse_fct, 3, $3, $5, $1,
0, 0, 0, 0 );
TEST($$);
if( SIZE($3) TYPE($1) = TYPE($3);
if( ! Test_Dims($1,$$) ) {
yyerror("Incompatible dimensions in '?:' condition");
YYERROR;
}
TYPE($1) = BOOLEAN;
if( SIZE($$) }
| bexpr '?' bexpr ':' expr
{
PROMOTE($3,$5);
if( ! Test_Dims($3,$5) ) {
yyerror("Incompatible dimensions in '?:' arguments");
YYERROR;
}
$$ = New_Func( 0, ifthenelse_fct, 3, $3, $5, $1,
0, 0, 0, 0 );
TEST($$);
if( SIZE($3) TYPE($1) = TYPE($3);
if( ! Test_Dims($1,$$) ) {
yyerror("Incompatible dimensions in '?:' condition");
YYERROR;
}
TYPE($1) = BOOLEAN;
if( SIZE($$) }
| bexpr '?' expr ':' bexpr
{
PROMOTE($3,$5);
if( ! Test_Dims($3,$5) ) {
yyerror("Incompatible dimensions in '?:' arguments");
YYERROR;
}
$$ = New_Func( 0, ifthenelse_fct, 3, $3, $5, $1,
0, 0, 0, 0 );
TEST($$);
if( SIZE($3) TYPE($1) = TYPE($3);
if( ! Test_Dims($1,$$) ) {
yyerror("Incompatible dimensions in '?:' condition");
YYERROR;
}
TYPE($1) = BOOLEAN;
if( SIZE($$) }
| FUNCTION ')'
{ if (FSTRCMP($1,"RANDOM(") == 0) { /* Scalar RANDOM() */
srand( (unsigned int) time(NULL) );
$$ = New_Func( DOUBLE, rnd_fct, 0, 0, 0, 0, 0, 0, 0, 0 );
} else if (FSTRCMP($1,"RANDOMN(") == 0) {/*Scalar RANDOMN()*/
srand( (unsigned int) time(NULL) );
$$ = New_Func( DOUBLE, gasrnd_fct, 0, 0, 0, 0, 0, 0, 0, 0 );
} else {
yyerror("Function() not supported");
YYERROR;
}
TEST($$);
}
| FUNCTION bexpr ')'
{ if (FSTRCMP($1,"SUM(") == 0) {
$$ = New_Func( LONG, sum_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
} else if (FSTRCMP($1,"NELEM(") == 0) {
$$ = New_Const( LONG, &( SIZE($2) ), sizeof(long) );
} else if (FSTRCMP($1,"ACCUM(") == 0) {
long zero = 0;
$$ = New_BinOp( LONG , $2, ACCUM, New_Const( LONG, &zero, sizeof(zero) ));
} else {
yyerror("Function(bool) not supported");
YYERROR;
}
TEST($$);
}
| FUNCTION sexpr ')'
{ if (FSTRCMP($1,"NELEM(") == 0) {
$$ = New_Const( LONG, &( SIZE($2) ), sizeof(long) );
} else if (FSTRCMP($1,"NVALID(") == 0) {
$$ = New_Func( LONG, nonnull_fct, 1, $2,
0, 0, 0, 0, 0, 0 );
} else {
yyerror("Function(str) not supported");
YYERROR;
}
TEST($$);
}
| FUNCTION bits ')'
{ if (FSTRCMP($1,"NELEM(") == 0) {
$$ = New_Const( LONG, &( SIZE($2) ), sizeof(long) );
} else if (FSTRCMP($1,"NVALID(") == 0) { /* Bit arrays do not have NULL */
$$ = New_Const( LONG, &( SIZE($2) ), sizeof(long) );
} else if (FSTRCMP($1,"SUM(") == 0) {
$$ = New_Func( LONG, sum_fct, 1, $2,
0, 0, 0, 0, 0, 0 );
} else if (FSTRCMP($1,"MIN(") == 0) {
$$ = New_Func( TYPE($2), /* Force 1D result */
min1_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
/* Note: $2 is a vector so the result can never
be a constant. Therefore it will never be set
inside New_Func(), and it is safe to set SIZE() */
SIZE($$) = 1;
} else if (FSTRCMP($1,"ACCUM(") == 0) {
long zero = 0;
$$ = New_BinOp( LONG , $2, ACCUM, New_Const( LONG, &zero, sizeof(zero) ));
} else if (FSTRCMP($1,"MAX(") == 0) {
$$ = New_Func( TYPE($2), /* Force 1D result */
max1_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
/* Note: $2 is a vector so the result can never
be a constant. Therefore it will never be set
inside New_Func(), and it is safe to set SIZE() */
SIZE($$) = 1;
} else {
yyerror("Function(bits) not supported");
YYERROR;
}
TEST($$);
}
| FUNCTION expr ')'
{ if (FSTRCMP($1,"SUM(") == 0)
$$ = New_Func( TYPE($2), sum_fct, 1, $2,
0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"AVERAGE(") == 0)
$$ = New_Func( DOUBLE, average_fct, 1, $2,
0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"STDDEV(") == 0)
$$ = New_Func( DOUBLE, stddev_fct, 1, $2,
0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"MEDIAN(") == 0)
$$ = New_Func( TYPE($2), median_fct, 1, $2,
0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"NELEM(") == 0)
$$ = New_Const( LONG, &( SIZE($2) ), sizeof(long) );
else if (FSTRCMP($1,"NVALID(") == 0)
$$ = New_Func( LONG, nonnull_fct, 1, $2,
0, 0, 0, 0, 0, 0 );
else if ((FSTRCMP($1,"ACCUM(") == 0) && (TYPE($2) == LONG)) {
long zero = 0;
$$ = New_BinOp( LONG , $2, ACCUM, New_Const( LONG, &zero, sizeof(zero) ));
} else if ((FSTRCMP($1,"ACCUM(") == 0) && (TYPE($2) == DOUBLE)) {
double zero = 0;
$$ = New_BinOp( DOUBLE , $2, ACCUM, New_Const( DOUBLE, &zero, sizeof(zero) ));
} else if ((FSTRCMP($1,"SEQDIFF(") == 0) && (TYPE($2) == LONG)) {
long zero = 0;
$$ = New_BinOp( LONG , $2, DIFF, New_Const( LONG, &zero, sizeof(zero) ));
} else if ((FSTRCMP($1,"SEQDIFF(") == 0) && (TYPE($2) == DOUBLE)) {
double zero = 0;
$$ = New_BinOp( DOUBLE , $2, DIFF, New_Const( DOUBLE, &zero, sizeof(zero) ));
} else if (FSTRCMP($1,"ABS(") == 0)
$$ = New_Func( 0, abs_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"MIN(") == 0)
$$ = New_Func( TYPE($2), /* Force 1D result */
min1_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"MAX(") == 0)
$$ = New_Func( TYPE($2), /* Force 1D result */
max1_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"RANDOM(") == 0) { /* Vector RANDOM() */
srand( (unsigned int) time(NULL) );
$$ = New_Func( 0, rnd_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
TEST($$);
TYPE($$) = DOUBLE;
} else if (FSTRCMP($1,"RANDOMN(") == 0) {
srand( (unsigned int) time(NULL) ); /* Vector RANDOMN() */
$$ = New_Func( 0, gasrnd_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
TEST($$);
TYPE($$) = DOUBLE;
}
else { /* These all take DOUBLE arguments */
if( TYPE($2) != DOUBLE ) $2 = New_Unary( DOUBLE, 0, $2 );
if (FSTRCMP($1,"SIN(") == 0)
$$ = New_Func( 0, sin_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"COS(") == 0)
$$ = New_Func( 0, cos_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"TAN(") == 0)
$$ = New_Func( 0, tan_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"ARCSIN(") == 0
|| FSTRCMP($1,"ASIN(") == 0)
$$ = New_Func( 0, asin_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"ARCCOS(") == 0
|| FSTRCMP($1,"ACOS(") == 0)
$$ = New_Func( 0, acos_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"ARCTAN(") == 0
|| FSTRCMP($1,"ATAN(") == 0)
$$ = New_Func( 0, atan_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"SINH(") == 0)
$$ = New_Func( 0, sinh_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"COSH(") == 0)
$$ = New_Func( 0, cosh_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"TANH(") == 0)
$$ = New_Func( 0, tanh_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"EXP(") == 0)
$$ = New_Func( 0, exp_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"LOG(") == 0)
$$ = New_Func( 0, log_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"LOG10(") == 0)
$$ = New_Func( 0, log10_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"SQRT(") == 0)
$$ = New_Func( 0, sqrt_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"ROUND(") == 0)
$$ = New_Func( 0, round_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"FLOOR(") == 0)
$$ = New_Func( 0, floor_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"CEIL(") == 0)
$$ = New_Func( 0, ceil_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP($1,"RANDOMP(") == 0) {
srand( (unsigned int) time(NULL) );
$$ = New_Func( 0, poirnd_fct, 1, $2,
0, 0, 0, 0, 0, 0 );
TYPE($$) = LONG;
} else {
yyerror("Function(expr) not supported");
YYERROR;
}
}
TEST($$);
}
| IFUNCTION sexpr ',' sexpr ')'
{
if (FSTRCMP($1,"STRSTR(") == 0) {
$$ = New_Func( LONG, strpos_fct, 2, $2, $4, 0,
0, 0, 0, 0 );
TEST($$);
}
}
| FUNCTION expr ',' expr ')'
{
if (FSTRCMP($1,"DEFNULL(") == 0) {
if( SIZE($2)>=SIZE($4) && Test_Dims( $2, $4 ) ) {
PROMOTE($2,$4);
$$ = New_Func( 0, defnull_fct, 2, $2, $4, 0,
0, 0, 0, 0 );
TEST($$);
} else {
yyerror("Dimensions of DEFNULL arguments "
"are not compatible");
YYERROR;
}
} else if (FSTRCMP($1,"ARCTAN2(") == 0) {
if( TYPE($2) != DOUBLE ) $2 = New_Unary( DOUBLE, 0, $2 );
if( TYPE($4) != DOUBLE ) $4 = New_Unary( DOUBLE, 0, $4 );
if( Test_Dims( $2, $4 ) ) {
$$ = New_Func( 0, atan2_fct, 2, $2, $4, 0, 0, 0, 0, 0 );
TEST($$);
if( SIZE($2) } else {
yyerror("Dimensions of arctan2 arguments "
"are not compatible");
YYERROR;
}
} else if (FSTRCMP($1,"MIN(") == 0) {
PROMOTE( $2, $4 );
if( Test_Dims( $2, $4 ) ) {
$$ = New_Func( 0, min2_fct, 2, $2, $4, 0, 0, 0, 0, 0 );
TEST($$);
if( SIZE($2) } else {
yyerror("Dimensions of min(a,b) arguments "
"are not compatible");
YYERROR;
}
} else if (FSTRCMP($1,"MAX(") == 0) {
PROMOTE( $2, $4 );
if( Test_Dims( $2, $4 ) ) {
$$ = New_Func( 0, max2_fct, 2, $2, $4, 0, 0, 0, 0, 0 );
TEST($$);
if( SIZE($2) } else {
yyerror("Dimensions of max(a,b) arguments "
"are not compatible");
YYERROR;
}
#if 0
} else if (FSTRCMP($1,"STRSTR(") == 0) {
if( TYPE($2) != STRING || TYPE($4) != STRING) {
yyerror("Arguments to strstr(s,r) must be strings");
YYERROR;
}
$$ = New_Func( LONG, strpos_fct, 2, $2, $4, 0,
0, 0, 0, 0 );
TEST($$);
#endif
} else {
yyerror("Function(expr,expr) not supported");
YYERROR;
}
}
| FUNCTION expr ',' expr ',' expr ',' expr ')'
{
if (FSTRCMP($1,"ANGSEP(") == 0) {
if( TYPE($2) != DOUBLE ) $2 = New_Unary( DOUBLE, 0, $2 );
if( TYPE($4) != DOUBLE ) $4 = New_Unary( DOUBLE, 0, $4 );
if( TYPE($6) != DOUBLE ) $6 = New_Unary( DOUBLE, 0, $6 );
if( TYPE($8) != DOUBLE ) $8 = New_Unary( DOUBLE, 0, $8 );
if( Test_Dims( $2, $4 ) && Test_Dims( $4, $6 ) &&
Test_Dims( $6, $8 ) ) {
$$ = New_Func( 0, angsep_fct, 4, $2, $4, $6, $8,0,0,0 );
TEST($$);
if( SIZE($2) if( SIZE($4) if( SIZE($6) } else {
yyerror("Dimensions of ANGSEP arguments "
"are not compatible");
YYERROR;
}
} else {
yyerror("Function(expr,expr,expr,expr) not supported");
YYERROR;
}
}
| expr '[' expr ']'
{ $$ = New_Deref( $1, 1, $3, 0, 0, 0, 0 ); TEST($$); }
| expr '[' expr ',' expr ']'
{ $$ = New_Deref( $1, 2, $3, $5, 0, 0, 0 ); TEST($$); }
| expr '[' expr ',' expr ',' expr ']'
{ $$ = New_Deref( $1, 3, $3, $5, $7, 0, 0 ); TEST($$); }
| expr '[' expr ',' expr ',' expr ',' expr ']'
{ $$ = New_Deref( $1, 4, $3, $5, $7, $9, 0 ); TEST($$); }
| expr '[' expr ',' expr ',' expr ',' expr ',' expr ']'
{ $$ = New_Deref( $1, 5, $3, $5, $7, $9, $11 ); TEST($$); }
| INTCAST expr
{ $$ = New_Unary( LONG, INTCAST, $2 ); TEST($$); }
| INTCAST bexpr
{ $$ = New_Unary( LONG, INTCAST, $2 ); TEST($$); }
| FLTCAST expr
{ $$ = New_Unary( DOUBLE, FLTCAST, $2 ); TEST($$); }
| FLTCAST bexpr
{ $$ = New_Unary( DOUBLE, FLTCAST, $2 ); TEST($$); }
;

bexpr: BOOLEAN
{ $$ = New_Const( BOOLEAN, &($1), sizeof(char) ); TEST($$); }
| BCOLUMN
{ $$ = New_Column( $1 ); TEST($$); }
| BCOLUMN '{' expr '}'
{
if( TYPE($3) != LONG
|| OPER($3) != CONST_OP ) {
yyerror("Offset argument must be a constant integer");
YYERROR;
}
$$ = New_Offset( $1, $3 ); TEST($$);
}
| bits EQ bits
{ $$ = New_BinOp( BOOLEAN, $1, EQ, $3 ); TEST($$);
SIZE($$) = 1; }
| bits NE bits
{ $$ = New_BinOp( BOOLEAN, $1, NE, $3 ); TEST($$);
SIZE($$) = 1; }
| bits LT bits
{ $$ = New_BinOp( BOOLEAN, $1, LT, $3 ); TEST($$);
SIZE($$) = 1; }
| bits LTE bits
{ $$ = New_BinOp( BOOLEAN, $1, LTE, $3 ); TEST($$);
SIZE($$) = 1; }
| bits GT bits
{ $$ = New_BinOp( BOOLEAN, $1, GT, $3 ); TEST($$);
SIZE($$) = 1; }
| bits GTE bits
{ $$ = New_BinOp( BOOLEAN, $1, GTE, $3 ); TEST($$);
SIZE($$) = 1; }
| expr GT expr
{ PROMOTE($1,$3); $$ = New_BinOp( BOOLEAN, $1, GT, $3 );
TEST($$); }
| expr LT expr
{ PROMOTE($1,$3); $$ = New_BinOp( BOOLEAN, $1, LT, $3 );
TEST($$); }
| expr GTE expr
{ PROMOTE($1,$3); $$ = New_BinOp( BOOLEAN, $1, GTE, $3 );
TEST($$); }
| expr LTE expr
{ PROMOTE($1,$3); $$ = New_BinOp( BOOLEAN, $1, LTE, $3 );
TEST($$); }
| expr '~' expr
{ PROMOTE($1,$3); $$ = New_BinOp( BOOLEAN, $1, '~', $3 );
TEST($$); }
| expr EQ expr
{ PROMOTE($1,$3); $$ = New_BinOp( BOOLEAN, $1, EQ, $3 );
TEST($$); }
| expr NE expr
{ PROMOTE($1,$3); $$ = New_BinOp( BOOLEAN, $1, NE, $3 );
TEST($$); }
| sexpr EQ sexpr
{ $$ = New_BinOp( BOOLEAN, $1, EQ, $3 ); TEST($$);
SIZE($$) = 1; }
| sexpr NE sexpr
{ $$ = New_BinOp( BOOLEAN, $1, NE, $3 ); TEST($$);
SIZE($$) = 1; }
| sexpr GT sexpr
{ $$ = New_BinOp( BOOLEAN, $1, GT, $3 ); TEST($$);
SIZE($$) = 1; }
| sexpr GTE sexpr
{ $$ = New_BinOp( BOOLEAN, $1, GTE, $3 ); TEST($$);
SIZE($$) = 1; }
| sexpr LT sexpr
{ $$ = New_BinOp( BOOLEAN, $1, LT, $3 ); TEST($$);
SIZE($$) = 1; }
| sexpr LTE sexpr
{ $$ = New_BinOp( BOOLEAN, $1, LTE, $3 ); TEST($$);
SIZE($$) = 1; }
| bexpr AND bexpr
{ $$ = New_BinOp( BOOLEAN, $1, AND, $3 ); TEST($$); }
| bexpr OR bexpr
{ $$ = New_BinOp( BOOLEAN, $1, OR, $3 ); TEST($$); }
| bexpr EQ bexpr
{ $$ = New_BinOp( BOOLEAN, $1, EQ, $3 ); TEST($$); }
| bexpr NE bexpr
{ $$ = New_BinOp( BOOLEAN, $1, NE, $3 ); TEST($$); }

| expr '=' expr ':' expr
{ PROMOTE($1,$3); PROMOTE($1,$5); PROMOTE($3,$5);
$3 = New_BinOp( BOOLEAN, $3, LTE, $1 );
$5 = New_BinOp( BOOLEAN, $1, LTE, $5 );
$$ = New_BinOp( BOOLEAN, $3, AND, $5 );
TEST($$); }

| bexpr '?' bexpr ':' bexpr
{
if( ! Test_Dims($3,$5) ) {
yyerror("Incompatible dimensions in '?:' arguments");
YYERROR;
}
$$ = New_Func( 0, ifthenelse_fct, 3, $3, $5, $1,
0, 0, 0, 0 );
TEST($$);
if( SIZE($3) if( ! Test_Dims($1,$$) ) {
yyerror("Incompatible dimensions in '?:' condition");
YYERROR;
}
if( SIZE($$) }

| BFUNCTION expr ')'
{
if (FSTRCMP($1,"ISNULL(") == 0) {
$$ = New_Func( 0, isnull_fct, 1, $2, 0, 0,
0, 0, 0, 0 );
TEST($$);
/* Use expression's size, but return BOOLEAN */
TYPE($$) = BOOLEAN;
} else {
yyerror("Boolean Function(expr) not supported");
YYERROR;
}
}
| BFUNCTION bexpr ')'
{
if (FSTRCMP($1,"ISNULL(") == 0) {
$$ = New_Func( 0, isnull_fct, 1, $2, 0, 0,
0, 0, 0, 0 );
TEST($$);
/* Use expression's size, but return BOOLEAN */
TYPE($$) = BOOLEAN;
} else {
yyerror("Boolean Function(expr) not supported");
YYERROR;
}
}
| BFUNCTION sexpr ')'
{
if (FSTRCMP($1,"ISNULL(") == 0) {
$$ = New_Func( BOOLEAN, isnull_fct, 1, $2, 0, 0,
0, 0, 0, 0 );
TEST($$);
} else {
yyerror("Boolean Function(expr) not supported");
YYERROR;
}
}
| FUNCTION bexpr ',' bexpr ')'
{
if (FSTRCMP($1,"DEFNULL(") == 0) {
if( SIZE($2)>=SIZE($4) && Test_Dims( $2, $4 ) ) {
$$ = New_Func( 0, defnull_fct, 2, $2, $4, 0,
0, 0, 0, 0 );
TEST($$);
} else {
yyerror("Dimensions of DEFNULL arguments are not compatible");
YYERROR;
}
} else {
yyerror("Boolean Function(expr,expr) not supported");
YYERROR;
}
}
| BFUNCTION expr ',' expr ',' expr ')'
{
if( TYPE($2) != DOUBLE ) $2 = New_Unary( DOUBLE, 0, $2 );
if( TYPE($4) != DOUBLE ) $4 = New_Unary( DOUBLE, 0, $4 );
if( TYPE($6) != DOUBLE ) $6 = New_Unary( DOUBLE, 0, $6 );
if( ! (Test_Dims( $2, $4 ) && Test_Dims( $4, $6 ) ) ) {
yyerror("Dimensions of NEAR arguments "
"are not compatible");
YYERROR;
} else {
if (FSTRCMP($1,"NEAR(") == 0) {
$$ = New_Func( BOOLEAN, near_fct, 3, $2, $4, $6,
0, 0, 0, 0 );
} else {
yyerror("Boolean Function not supported");
YYERROR;
}
TEST($$);

if( SIZE($$) if( SIZE($2) if( SIZE($4) }
}
| BFUNCTION expr ',' expr ',' expr ',' expr ',' expr ')'
{
if( TYPE($2) != DOUBLE ) $2 = New_Unary( DOUBLE, 0, $2 );
if( TYPE($4) != DOUBLE ) $4 = New_Unary( DOUBLE, 0, $4 );
if( TYPE($6) != DOUBLE ) $6 = New_Unary( DOUBLE, 0, $6 );
if( TYPE($8) != DOUBLE ) $8 = New_Unary( DOUBLE, 0, $8 );
if( TYPE($10)!= DOUBLE ) $10= New_Unary( DOUBLE, 0, $10);
if( ! (Test_Dims( $2, $4 ) && Test_Dims( $4, $6 ) &&
Test_Dims( $6, $8 ) && Test_Dims( $8, $10 )) ) {
yyerror("Dimensions of CIRCLE arguments "
"are not compatible");
YYERROR;
} else {
if (FSTRCMP($1,"CIRCLE(") == 0) {
$$ = New_Func( BOOLEAN, circle_fct, 5, $2, $4, $6, $8,
$10, 0, 0 );
} else {
yyerror("Boolean Function not supported");
YYERROR;
}
TEST($$);
if( SIZE($$) if( SIZE($2) if( SIZE($4) if( SIZE($6) if( SIZE($8) }
}
| BFUNCTION expr ',' expr ',' expr ',' expr ',' expr ',' expr ',' expr ')'
{
if( TYPE($2) != DOUBLE ) $2 = New_Unary( DOUBLE, 0, $2 );
if( TYPE($4) != DOUBLE ) $4 = New_Unary( DOUBLE, 0, $4 );
if( TYPE($6) != DOUBLE ) $6 = New_Unary( DOUBLE, 0, $6 );
if( TYPE($8) != DOUBLE ) $8 = New_Unary( DOUBLE, 0, $8 );
if( TYPE($10)!= DOUBLE ) $10= New_Unary( DOUBLE, 0, $10);
if( TYPE($12)!= DOUBLE ) $12= New_Unary( DOUBLE, 0, $12);
if( TYPE($14)!= DOUBLE ) $14= New_Unary( DOUBLE, 0, $14);
if( ! (Test_Dims( $2, $4 ) && Test_Dims( $4, $6 ) &&
Test_Dims( $6, $8 ) && Test_Dims( $8, $10 ) &&
Test_Dims($10,$12 ) && Test_Dims($12, $14 ) ) ) {
yyerror("Dimensions of BOX or ELLIPSE arguments "
"are not compatible");
YYERROR;
} else {
if (FSTRCMP($1,"BOX(") == 0) {
$$ = New_Func( BOOLEAN, box_fct, 7, $2, $4, $6, $8,
$10, $12, $14 );
} else if (FSTRCMP($1,"ELLIPSE(") == 0) {
$$ = New_Func( BOOLEAN, elps_fct, 7, $2, $4, $6, $8,
$10, $12, $14 );
} else {
yyerror("SAO Image Function not supported");
YYERROR;
}
TEST($$);
if( SIZE($$) if( SIZE($2) if( SIZE($4) if( SIZE($6) if( SIZE($8) if( SIZE($10) if( SIZE($12) }
}

| GTIFILTER ')'
{ /* Use defaults for all elements */
$$ = New_GTI( "", -99, "*START*", "*STOP*" );
TEST($$); }
| GTIFILTER STRING ')'
{ /* Use defaults for all except filename */
$$ = New_GTI( $2, -99, "*START*", "*STOP*" );
TEST($$); }
| GTIFILTER STRING ',' expr ')'
{ $$ = New_GTI( $2, $4, "*START*", "*STOP*" );
TEST($$); }
| GTIFILTER STRING ',' expr ',' STRING ',' STRING ')'
{ $$ = New_GTI( $2, $4, $6, $8 );
TEST($$); }

| REGFILTER STRING ')'
{ /* Use defaults for all except filename */
$$ = New_REG( $2, -99, -99, "" );
TEST($$); }
| REGFILTER STRING ',' expr ',' expr ')'
{ $$ = New_REG( $2, $4, $6, "" );
TEST($$); }
| REGFILTER STRING ',' expr ',' expr ',' STRING ')'
{ $$ = New_REG( $2, $4, $6, $8 );
TEST($$); }

| bexpr '[' expr ']'
{ $$ = New_Deref( $1, 1, $3, 0, 0, 0, 0 ); TEST($$); }
| bexpr '[' expr ',' expr ']'
{ $$ = New_Deref( $1, 2, $3, $5, 0, 0, 0 ); TEST($$); }
| bexpr '[' expr ',' expr ',' expr ']'
{ $$ = New_Deref( $1, 3, $3, $5, $7, 0, 0 ); TEST($$); }
| bexpr '[' expr ',' expr ',' expr ',' expr ']'
{ $$ = New_Deref( $1, 4, $3, $5, $7, $9, 0 ); TEST($$); }
| bexpr '[' expr ',' expr ',' expr ',' expr ',' expr ']'
{ $$ = New_Deref( $1, 5, $3, $5, $7, $9, $11 ); TEST($$); }
| NOT bexpr
{ $$ = New_Unary( BOOLEAN, NOT, $2 ); TEST($$); }
| '(' bexpr ')'
{ $$ = $2; }
;

sexpr: STRING
{ $$ = New_Const( STRING, $1, strlen($1)+1 ); TEST($$);
SIZE($$) = strlen($1); }
| SCOLUMN
{ $$ = New_Column( $1 ); TEST($$); }
| SCOLUMN '{' expr '}'
{
if( TYPE($3) != LONG
|| OPER($3) != CONST_OP ) {
yyerror("Offset argument must be a constant integer");
YYERROR;
}
$$ = New_Offset( $1, $3 ); TEST($$);
}
| SNULLREF
{ $$ = New_Func( STRING, null_fct, 0, 0, 0, 0, 0, 0, 0, 0 ); }
| '(' sexpr ')'
{ $$ = $2; }
| sexpr '+' sexpr
{
if (SIZE($1)+SIZE($3) >= MAX_STRLEN) {
yyerror("Combined string size exceeds " MAX_STRLEN_S " characters");
YYERROR;
}
$$ = New_BinOp( STRING, $1, '+', $3 ); TEST($$);
SIZE($$) = SIZE($1) + SIZE($3);
}
| bexpr '?' sexpr ':' sexpr
{
int outSize;
if( SIZE($1)!=1 ) {
yyerror("Cannot have a vector string column");
YYERROR;
}
/* Since the output can be calculated now, as a constant
scalar, we must precalculate the output size, in
order to avoid an overflow. */
outSize = SIZE($3);
if (SIZE($5) > outSize) outSize = SIZE($5);
$$ = New_FuncSize( 0, ifthenelse_fct, 3, $3, $5, $1,
0, 0, 0, 0, outSize);

TEST($$);
if( SIZE($3) }

| FUNCTION sexpr ',' sexpr ')'
{
if (FSTRCMP($1,"DEFNULL(") == 0) {
int outSize;
/* Since the output can be calculated now, as a constant
scalar, we must precalculate the output size, in
order to avoid an overflow. */
outSize = SIZE($2);
if (SIZE($4) > outSize) outSize = SIZE($4);

$$ = New_FuncSize( 0, defnull_fct, 2, $2, $4, 0,
0, 0, 0, 0, outSize );
TEST($$);
if( SIZE($4)>SIZE($2) ) SIZE($$) = SIZE($4);
} else {
yyerror("Function(string,string) not supported");
YYERROR;
}
}
| FUNCTION sexpr ',' expr ',' expr ')'
{
if (FSTRCMP($1,"STRMID(") == 0) {
int len;
if( TYPE($4) != LONG || SIZE($4) != 1 ||
TYPE($6) != LONG || SIZE($6) != 1) {
yyerror("When using STRMID(S,P,N), P and N must be integers (and not vector columns)");
YYERROR;
}
if (OPER($6) == CONST_OP) {
/* Constant value: use that directly */
len = (gParse.Nodes[$6].value.data.lng);
} else {
/* Variable value: use the maximum possible (from $2) */
len = SIZE($2);
}
if (len <= 0 || len >= MAX_STRLEN) {
yyerror("STRMID(S,P,N), N must be 1-" MAX_STRLEN_S);
YYERROR;
}
$$ = New_FuncSize( 0, strmid_fct, 3, $2, $4,$6,0,0,0,0,len);
TEST($$);
} else {
yyerror("Function(string,expr,expr) not supported");
YYERROR;
}
}

;

%%

/*************************************************************************/
/* Start of "New" routines which build the expression Nodal structure */
/*************************************************************************/

static int Alloc_Node( void )
{
/* Use this for allocation to guarantee *Nodes */
Node *newNodePtr; /* survives on failure, making it still valid */
/* while working our way out of this error */

if( gParse.nNodes == gParse.nNodesAlloc ) {
if( gParse.Nodes ) {
gParse.nNodesAlloc += gParse.nNodesAlloc;
newNodePtr = (Node *)realloc( gParse.Nodes,
sizeof(Node)*gParse.nNodesAlloc );
} else {
gParse.nNodesAlloc = 100;
newNodePtr = (Node *)malloc ( sizeof(Node)*gParse.nNodesAlloc );
}

if( newNodePtr ) {
gParse.Nodes = newNodePtr;
} else {
gParse.status = MEMORY_ALLOCATION;
return( -1 );
}
}

return ( gParse.nNodes++ );
}

static void Free_Last_Node( void )
{
if( gParse.nNodes ) gParse.nNodes--;
}

static int New_Const( int returnType, void *value, long len )
{
Node *this;
int n;

n = Alloc_Node();
if( n>=0 ) {
this = gParse.Nodes + n;
this->operation = CONST_OP; /* Flag a constant */
this->DoOp = NULL;
this->nSubNodes = 0;
this->type = returnType;
memcpy( &(this->value.data), value, len );
this->value.undef = NULL;
this->value.nelem = 1;
this->value.naxis = 1;
this->value.naxes[0] = 1;
}
return(n);
}

static int New_Column( int ColNum )
{
Node *this;
int n, i;

n = Alloc_Node();
if( n>=0 ) {
this = gParse.Nodes + n;
this->operation = -ColNum;
this->DoOp = NULL;
this->nSubNodes = 0;
this->type = gParse.varData[ColNum].type;
this->value.nelem = gParse.varData[ColNum].nelem;
this->value.naxis = gParse.varData[ColNum].naxis;
for( i=0; i this->value.naxes[i] = gParse.varData[ColNum].naxes[i];
}
return(n);
}

static int New_Offset( int ColNum, int offsetNode )
{
Node *this;
int n, i, colNode;

colNode = New_Column( ColNum );
if( colNode<0 ) return(-1);

n = Alloc_Node();
if( n>=0 ) {
this = gParse.Nodes + n;
this->operation = '{';
this->DoOp = Do_Offset;
this->nSubNodes = 2;
this->SubNodes[0] = colNode;
this->SubNodes[1] = offsetNode;
this->type = gParse.varData[ColNum].type;
this->value.nelem = gParse.varData[ColNum].nelem;
this->value.naxis = gParse.varData[ColNum].naxis;
for( i=0; i this->value.naxes[i] = gParse.varData[ColNum].naxes[i];
}
return(n);
}

static int New_Unary( int returnType, int Op, int Node1 )
{
Node *this, *that;
int i,n;

if( Node1<0 ) return(-1);
that = gParse.Nodes + Node1;

if( !Op ) Op = returnType;

if( (Op==DOUBLE || Op==FLTCAST) && that->type==DOUBLE ) return( Node1 );
if( (Op==LONG || Op==INTCAST) && that->type==LONG ) return( Node1 );
if( (Op==BOOLEAN ) && that->type==BOOLEAN ) return( Node1 );

n = Alloc_Node();
if( n>=0 ) {
this = gParse.Nodes + n;
this->operation = Op;
this->DoOp = Do_Unary;
this->nSubNodes = 1;
this->SubNodes[0] = Node1;
this->type = returnType;

that = gParse.Nodes + Node1; /* Reset in case .Nodes mv'd */
this->value.nelem = that->value.nelem;
this->value.naxis = that->value.naxis;
for( i=0; ivalue.naxis; i++ )
this->value.naxes[i] = that->value.naxes[i];

if( that->operation==CONST_OP ) this->DoOp( this );
}
return( n );
}

static int New_BinOp( int returnType, int Node1, int Op, int Node2 )
{
Node *this,*that1,*that2;
int n,i,constant;

if( Node1<0 || Node2<0 ) return(-1);

n = Alloc_Node();
if( n>=0 ) {
this = gParse.Nodes + n;
this->operation = Op;
this->nSubNodes = 2;
this->SubNodes[0]= Node1;
this->SubNodes[1]= Node2;
this->type = returnType;

that1 = gParse.Nodes + Node1;
that2 = gParse.Nodes + Node2;
constant = (that1->operation==CONST_OP
&& that2->operation==CONST_OP);
if( that1->type!=STRING && that1->type!=BITSTR )
if( !Test_Dims( Node1, Node2 ) ) {
Free_Last_Node();
yyerror("Array sizes/dims do not match for binary operator");
return(-1);
}
if( that1->value.nelem == 1 ) that1 = that2;

this->value.nelem = that1->value.nelem;
this->value.naxis = that1->value.naxis;
for( i=0; ivalue.naxis; i++ )
this->value.naxes[i] = that1->value.naxes[i];

if ( Op == ACCUM && that1->type == BITSTR ) {
/* ACCUM is rank-reducing on bit strings */
this->value.nelem = 1;
this->value.naxis = 1;
this->value.naxes[0] = 1;
}

/* Both subnodes should be of same time */
switch( that1->type ) {
case BITSTR: this->DoOp = Do_BinOp_bit; break;
case STRING: this->DoOp = Do_BinOp_str; break;
case BOOLEAN: this->DoOp = Do_BinOp_log; break;
case LONG: this->DoOp = Do_BinOp_lng; break;
case DOUBLE: this->DoOp = Do_BinOp_dbl; break;
}
if( constant ) this->DoOp( this );
}
return( n );
}

static int New_Func( int returnType, funcOp Op, int nNodes,
int Node1, int Node2, int Node3, int Node4,
int Node5, int Node6, int Node7 )
{
return New_FuncSize(returnType, Op, nNodes,
Node1, Node2, Node3, Node4,
Node5, Node6, Node7, 0);
}

static int New_FuncSize( int returnType, funcOp Op, int nNodes,
int Node1, int Node2, int Node3, int Node4,
int Node5, int Node6, int Node7, int Size )
/* If returnType==0 , use Node1's type and vector sizes as returnType, */
/* else return a single value of type returnType */
{
Node *this, *that;
int i,n,constant;

if( Node1<0 || Node2<0 || Node3<0 || Node4<0 ||
Node5<0 || Node6<0 || Node7<0 ) return(-1);

n = Alloc_Node();
if( n>=0 ) {
this = gParse.Nodes + n;
this->operation = (int)Op;
this->DoOp = Do_Func;
this->nSubNodes = nNodes;
this->SubNodes[0] = Node1;
this->SubNodes[1] = Node2;
this->SubNodes[2] = Node3;
this->SubNodes[3] = Node4;
this->SubNodes[4] = Node5;
this->SubNodes[5] = Node6;
this->SubNodes[6] = Node7;
i = constant = nNodes; /* Functions with zero params are not const */
if (Op == poirnd_fct) constant = 0; /* Nor is Poisson deviate */

while( i-- )
constant = ( constant && OPER(this->SubNodes[i]) == CONST_OP );

if( returnType ) {
this->type = returnType;
this->value.nelem = 1;
this->value.naxis = 1;
this->value.naxes[0] = 1;
} else {
that = gParse.Nodes + Node1;
this->type = that->type;
this->value.nelem = that->value.nelem;
this->value.naxis = that->value.naxis;
for( i=0; ivalue.naxis; i++ )
this->value.naxes[i] = that->value.naxes[i];
}
/* Force explicit size before evaluating */
if (Size > 0) this->value.nelem = Size;

if( constant ) this->DoOp( this );
}
return( n );
}

static int New_Deref( int Var, int nDim,
int Dim1, int Dim2, int Dim3, int Dim4, int Dim5 )
{
int n, idx, constant;
long elem=0;
Node *this, *theVar, *theDim[MAXDIMS];

if( Var<0 || Dim1<0 || Dim2<0 || Dim3<0 || Dim4<0 || Dim5<0 ) return(-1);

theVar = gParse.Nodes + Var;
if( theVar->operation==CONST_OP || theVar->value.nelem==1 ) {
yyerror("Cannot index a scalar value");
return(-1);
}

n = Alloc_Node();
if( n>=0 ) {
this = gParse.Nodes + n;
this->nSubNodes = nDim+1;
theVar = gParse.Nodes + (this->SubNodes[0]=Var);
theDim[0] = gParse.Nodes + (this->SubNodes[1]=Dim1);
theDim[1] = gParse.Nodes + (this->SubNodes[2]=Dim2);
theDim[2] = gParse.Nodes + (this->SubNodes[3]=Dim3);
theDim[3] = gParse.Nodes + (this->SubNodes[4]=Dim4);
theDim[4] = gParse.Nodes + (this->SubNodes[5]=Dim5);
constant = theVar->operation==CONST_OP;
for( idx=0; idx constant = (constant && theDim[idx]->operation==CONST_OP);

for( idx=0; idx if( theDim[idx]->value.nelem>1 ) {
Free_Last_Node();
yyerror("Cannot use an array as an index value");
return(-1);
} else if( theDim[idx]->type!=LONG ) {
Free_Last_Node();
yyerror("Index value must be an integer type");
return(-1);
}

this->operation = '[';
this->DoOp = Do_Deref;
this->type = theVar->type;

if( theVar->value.naxis == nDim ) { /* All dimensions specified */
this->value.nelem = 1;
this->value.naxis = 1;
this->value.naxes[0] = 1;
} else if( nDim==1 ) { /* Dereference only one dimension */
elem=1;
this->value.naxis = theVar->value.naxis-1;
for( idx=0; idxvalue.naxis; idx++ ) {
elem *= ( this->value.naxes[idx] = theVar->value.naxes[idx] );
}
this->value.nelem = elem;
} else {
Free_Last_Node();
yyerror("Must specify just one or all indices for vector");
return(-1);
}
if( constant ) this->DoOp( this );
}
return(n);
}

extern int yyGetVariable( char *varName, YYSTYPE *varVal );

static int New_GTI( char *fname, int Node1, char *start, char *stop )
{
fitsfile *fptr;
Node *this, *that0, *that1;
int type,i,n, startCol, stopCol, Node0;
int hdutype, hdunum, evthdu, samefile, extvers, movetotype, tstat;
char extname[100];
long nrows;
double timeZeroI[2], timeZeroF[2], dt, timeSpan;
char xcol[20], xexpr[20];
YYSTYPE colVal;

if( Node1==-99 ) {
type = yyGetVariable( "TIME", &colVal );
if( type==COLUMN ) {
Node1 = New_Column( (int)colVal.lng );
} else {
yyerror("Could not build TIME column for GTIFILTER");
return(-1);
}
}
Node1 = New_Unary( DOUBLE, 0, Node1 );
Node0 = Alloc_Node(); /* This will hold the START/STOP times */
if( Node1<0 || Node0<0 ) return(-1);

/* Record current HDU number in case we need to move within this file */

fptr = gParse.def_fptr;
ffghdn( fptr, &evthdu );

/* Look for TIMEZERO keywords in current extension */

tstat = 0;
if( ffgkyd( fptr, "TIMEZERO", timeZeroI, NULL, &tstat ) ) {
tstat = 0;
if( ffgkyd( fptr, "TIMEZERI", timeZeroI, NULL, &tstat ) ) {
timeZeroI[0] = timeZeroF[0] = 0.0;
} else if( ffgkyd( fptr, "TIMEZERF", timeZeroF, NULL, &tstat ) ) {
timeZeroF[0] = 0.0;
}
} else {
timeZeroF[0] = 0.0;
}

/* Resolve filename parameter */

switch( fname[0] ) {
case '\0':
samefile = 1;
hdunum = 1;
break;
case '[':
samefile = 1;
i = 1;
while( fname[i] != '\0' && fname[i] != ']' ) i++;
if( fname[i] ) {
fname[i] = '\0';
fname++;
ffexts( fname, &hdunum, extname, &extvers, &movetotype,
xcol, xexpr, &gParse.status );
if( *extname ) {
ffmnhd( fptr, movetotype, extname, extvers, &gParse.status );
ffghdn( fptr, &hdunum );
} else if( hdunum ) {
ffmahd( fptr, ++hdunum, &hdutype, &gParse.status );
} else if( !gParse.status ) {
yyerror("Cannot use primary array for GTI filter");
return( -1 );
}
} else {
yyerror("File extension specifier lacks closing ']'");
return( -1 );
}
break;
case '+':
samefile = 1;
hdunum = atoi( fname ) + 1;
if( hdunum>1 )
ffmahd( fptr, hdunum, &hdutype, &gParse.status );
else {
yyerror("Cannot use primary array for GTI filter");
return( -1 );
}
break;
default:
samefile = 0;
if( ! ffopen( &fptr, fname, READONLY, &gParse.status ) )
ffghdn( fptr, &hdunum );
break;
}
if( gParse.status ) return(-1);

/* If at primary, search for GTI extension */

if( hdunum==1 ) {
while( 1 ) {
hdunum++;
if( ffmahd( fptr, hdunum, &hdutype, &gParse.status ) ) break;
if( hdutype==IMAGE_HDU ) continue;
tstat = 0;
if( ffgkys( fptr, "EXTNAME", extname, NULL, &tstat ) ) continue;
ffupch( extname );
if( strstr( extname, "GTI" ) ) break;
}
if( gParse.status ) {
if( gParse.status==END_OF_FILE )
yyerror("GTI extension not found in this file");
return(-1);
}
}

/* Locate START/STOP Columns */

ffgcno( fptr, CASEINSEN, start, &startCol, &gParse.status );
ffgcno( fptr, CASEINSEN, stop, &stopCol, &gParse.status );
if( gParse.status ) return(-1);

/* Look for TIMEZERO keywords in GTI extension */

tstat = 0;
if( ffgkyd( fptr, "TIMEZERO", timeZeroI+1, NULL, &tstat ) ) {
tstat = 0;
if( ffgkyd( fptr, "TIMEZERI", timeZeroI+1, NULL, &tstat ) ) {
timeZeroI[1] = timeZeroF[1] = 0.0;
} else if( ffgkyd( fptr, "TIMEZERF", timeZeroF+1, NULL, &tstat ) ) {
timeZeroF[1] = 0.0;
}
} else {
timeZeroF[1] = 0.0;
}

n = Alloc_Node();
if( n >= 0 ) {
this = gParse.Nodes + n;
this->nSubNodes = 2;
this->SubNodes[1] = Node1;
this->operation = (int)gtifilt_fct;
this->DoOp = Do_GTI;
this->type = BOOLEAN;
that1 = gParse.Nodes + Node1;
this->value.nelem = that1->value.nelem;
this->value.naxis = that1->value.naxis;
for( i=0; i < that1->value.naxis; i++ )
this->value.naxes[i] = that1->value.naxes[i];

/* Init START/STOP node to be treated as a "constant" */

this->SubNodes[0] = Node0;
that0 = gParse.Nodes + Node0;
that0->operation = CONST_OP;
that0->DoOp = NULL;
that0->value.data.ptr= NULL;

/* Read in START/STOP times */

if( ffgkyj( fptr, "NAXIS2", &nrows, NULL, &gParse.status ) )
return(-1);
that0->value.nelem = nrows;
if( nrows ) {

that0->value.data.dblptr = (double*)malloc( 2*nrows*sizeof(double) );
if( !that0->value.data.dblptr ) {
gParse.status = MEMORY_ALLOCATION;
return(-1);
}

ffgcvd( fptr, startCol, 1L, 1L, nrows, 0.0,
that0->value.data.dblptr, &i, &gParse.status );
ffgcvd( fptr, stopCol, 1L, 1L, nrows, 0.0,
that0->value.data.dblptr+nrows, &i, &gParse.status );
if( gParse.status ) {
free( that0->value.data.dblptr );
return(-1);
}

/* Test for fully time-ordered GTI... both START && STOP */

that0->type = 1; /* Assume yes */
i = nrows;
while( --i )
if( that0->value.data.dblptr[i-1]
>= that0->value.data.dblptr[i]
|| that0->value.data.dblptr[i-1+nrows]
>= that0->value.data.dblptr[i+nrows] ) {
that0->type = 0;
break;
}

/* Handle TIMEZERO offset, if any */

dt = (timeZeroI[1] - timeZeroI[0]) + (timeZeroF[1] - timeZeroF[0]);
timeSpan = that0->value.data.dblptr[nrows+nrows-1]
- that0->value.data.dblptr[0];

if( fabs( dt / timeSpan ) > 1e-12 ) {
for( i=0; i<(nrows+nrows); i++ )
that0->value.data.dblptr[i] += dt;
}
}
if( OPER(Node1)==CONST_OP )
this->DoOp( this );
}

if( samefile )
ffmahd( fptr, evthdu, &hdutype, &gParse.status );
else
ffclos( fptr, &gParse.status );

return( n );
}

static int New_REG( char *fname, int NodeX, int NodeY, char *colNames )
{
Node *this, *that0;
int type, n, Node0;
int Xcol, Ycol, tstat;
WCSdata wcs;
SAORegion *Rgn;
char *cX, *cY;
YYSTYPE colVal;

if( NodeX==-99 ) {
type = yyGetVariable( "X", &colVal );
if( type==COLUMN ) {
NodeX = New_Column( (int)colVal.lng );
} else {
yyerror("Could not build X column for REGFILTER");
return(-1);
}
}
if( NodeY==-99 ) {
type = yyGetVariable( "Y", &colVal );
if( type==COLUMN ) {
NodeY = New_Column( (int)colVal.lng );
} else {
yyerror("Could not build Y column for REGFILTER");
return(-1);
}
}
NodeX = New_Unary( DOUBLE, 0, NodeX );
NodeY = New_Unary( DOUBLE, 0, NodeY );
Node0 = Alloc_Node(); /* This will hold the Region Data */
if( NodeX<0 || NodeY<0 || Node0<0 ) return(-1);

if( ! (Test_Dims( NodeX, NodeY ) ) ) {
yyerror("Dimensions of REGFILTER arguments are not compatible");
return (-1);
}

n = Alloc_Node();
if( n >= 0 ) {
this = gParse.Nodes + n;
this->nSubNodes = 3;
this->SubNodes[0] = Node0;
this->SubNodes[1] = NodeX;
this->SubNodes[2] = NodeY;
this->operation = (int)regfilt_fct;
this->DoOp = Do_REG;
this->type = BOOLEAN;
this->value.nelem = 1;
this->value.naxis = 1;
this->value.naxes[0] = 1;

Copy_Dims(n, NodeX);
if( SIZE(NodeX)
/* Init Region node to be treated as a "constant" */

that0 = gParse.Nodes + Node0;
that0->operation = CONST_OP;
that0->DoOp = NULL;

/* Identify what columns to use for WCS information */

Xcol = Ycol = 0;
if( *colNames ) {
/* Use the column names in this string for WCS info */
while( *colNames==' ' ) colNames++;
cX = cY = colNames;
while( *cY && *cY!=' ' && *cY!=',' ) cY++;
if( *cY )
*(cY++) = '\0';
while( *cY==' ' ) cY++;
if( !*cY ) {
yyerror("Could not extract valid pair of column names from REGFILTER");
Free_Last_Node();
return( -1 );
}
fits_get_colnum( gParse.def_fptr, CASEINSEN, cX, &Xcol,
&gParse.status );
fits_get_colnum( gParse.def_fptr, CASEINSEN, cY, &Ycol,
&gParse.status );
if( gParse.status ) {
yyerror("Could not locate columns indicated for WCS info");
Free_Last_Node();
return( -1 );
}

} else {
/* Try to find columns used in X/Y expressions */
Xcol = Locate_Col( gParse.Nodes + NodeX );
Ycol = Locate_Col( gParse.Nodes + NodeY );
if( Xcol<0 || Ycol<0 ) {
yyerror("Found multiple X/Y column references in REGFILTER");
Free_Last_Node();
return( -1 );
}
}

/* Now, get the WCS info, if it exists, from the indicated columns */
wcs.exists = 0;
if( Xcol>0 && Ycol>0 ) {
tstat = 0;
ffgtcs( gParse.def_fptr, Xcol, Ycol,
&wcs.xrefval, &wcs.yrefval,
&wcs.xrefpix, &wcs.yrefpix,
&wcs.xinc, &wcs.yinc,
&wcs.rot, wcs.type,
&tstat );
if( tstat==NO_WCS_KEY ) {
wcs.exists = 0;
} else if( tstat ) {
gParse.status = tstat;
Free_Last_Node();
return( -1 );
} else {
wcs.exists = 1;
}
}

/* Read in Region file */

fits_read_rgnfile( fname, &wcs, &Rgn, &gParse.status );
if( gParse.status ) {
Free_Last_Node();
return( -1 );
}

that0->value.data.ptr = Rgn;

if( OPER(NodeX)==CONST_OP && OPER(NodeY)==CONST_OP )
this->DoOp( this );
}

return( n );
}

static int New_Vector( int subNode )
{
Node *this, *that;
int n;

n = Alloc_Node();
if( n >= 0 ) {
this = gParse.Nodes + n;
that = gParse.Nodes + subNode;
this->type = that->type;
this->nSubNodes = 1;
this->SubNodes[0] = subNode;
this->operation = '{';
this->DoOp = Do_Vector;
}

return( n );
}

static int Close_Vec( int vecNode )
{
Node *this;
int n, nelem=0;

this = gParse.Nodes + vecNode;
for( n=0; n < this->nSubNodes; n++ ) {
if( TYPE( this->SubNodes[n] ) != this->type ) {
this->SubNodes[n] = New_Unary( this->type, 0, this->SubNodes[n] );
if( this->SubNodes[n]<0 ) return(-1);
}
nelem += SIZE(this->SubNodes[n]);
}
this->value.naxis = 1;
this->value.nelem = nelem;
this->value.naxes[0] = nelem;

return( vecNode );
}

static int Locate_Col( Node *this )
/* Locate the TABLE column number of any columns in "this" calculation. */
/* Return ZERO if none found, or negative if more than 1 found. */
{
Node *that;
int i, col=0, newCol, nfound=0;

if( this->nSubNodes==0
&& this->operation<=0 && this->operation!=CONST_OP )
return gParse.colData[ - this->operation].colnum;

for( i=0; inSubNodes; i++ ) {
that = gParse.Nodes + this->SubNodes[i];
if( that->operation>0 ) {
newCol = Locate_Col( that );
if( newCol<=0 ) {
nfound += -newCol;
} else {
if( !nfound ) {
col = newCol;
nfound++;
} else if( col != newCol ) {
nfound++;
}
}
} else if( that->operation!=CONST_OP ) {
/* Found a Column */
newCol = gParse.colData[- that->operation].colnum;
if( !nfound ) {
col = newCol;
nfound++;
} else if( col != newCol ) {
nfound++;
}
}
}
if( nfound!=1 )
return( - nfound );
else
return( col );
}

static int Test_Dims( int Node1, int Node2 )
{
Node *that1, *that2;
int valid, i;

if( Node1<0 || Node2<0 ) return(0);

that1 = gParse.Nodes + Node1;
that2 = gParse.Nodes + Node2;

if( that1->value.nelem==1 || that2->value.nelem==1 )
valid = 1;
else if( that1->type==that2->type
&& that1->value.nelem==that2->value.nelem
&& that1->value.naxis==that2->value.naxis ) {
valid = 1;
for( i=0; ivalue.naxis; i++ ) {
if( that1->value.naxes[i]!=that2->value.naxes[i] )
valid = 0;
}
} else
valid = 0;
return( valid );
}

static void Copy_Dims( int Node1, int Node2 )
{
Node *that1, *that2;
int i;

if( Node1<0 || Node2<0 ) return;

that1 = gParse.Nodes + Node1;
that2 = gParse.Nodes + Node2;

that1->value.nelem = that2->value.nelem;
that1->value.naxis = that2->value.naxis;
for( i=0; ivalue.naxis; i++ )
that1->value.naxes[i] = that2->value.naxes[i];
}

/********************************************************************/
/* Routines for actually evaluating the expression start here */
/********************************************************************/

void Evaluate_Parser( long firstRow, long nRows )
/***********************************************************************/
/* Reset the parser for processing another batch of data... */
/* firstRow: Row number of the first element to evaluate */
/* nRows: Number of rows to be processed */
/* Initialize each COLUMN node so that its UNDEF and DATA pointers */
/* point to the appropriate column arrays. */
/* Finally, call Evaluate_Node for final node. */
/***********************************************************************/
{
int i, column;
long offset, rowOffset;

gParse.firstRow = firstRow;
gParse.nRows = nRows;

/* Reset Column Nodes' pointers to point to right data and UNDEF arrays */

rowOffset = firstRow - gParse.firstDataRow;
for( i=0; i if( OPER(i) > 0 || OPER(i) == CONST_OP ) continue;

column = -OPER(i);
offset = gParse.varData[column].nelem * rowOffset;

gParse.Nodes[i].value.undef = gParse.varData[column].undef + offset;

switch( gParse.Nodes[i].type ) {
case BITSTR:
gParse.Nodes[i].value.data.strptr =
(char**)gParse.varData[column].data + rowOffset;
gParse.Nodes[i].value.undef = NULL;
break;
case STRING:
gParse.Nodes[i].value.data.strptr =
(char**)gParse.varData[column].data + rowOffset;
gParse.Nodes[i].value.undef = gParse.varData[column].undef + rowOffset;
break;
case BOOLEAN:
gParse.Nodes[i].value.data.logptr =
(char*)gParse.varData[column].data + offset;
break;
case LONG:
gParse.Nodes[i].value.data.lngptr =
(long*)gParse.varData[column].data + offset;
break;
case DOUBLE:
gParse.Nodes[i].value.data.dblptr =
(double*)gParse.varData[column].data + offset;
break;
}
}

Evaluate_Node( gParse.resultNode );
}

static void Evaluate_Node( int thisNode )
/**********************************************************************/
/* Recursively evaluate thisNode's subNodes, then call one of the */
/* Do_ functions pointed to by thisNode's DoOp element. */
/**********************************************************************/
{
Node *this;
int i;

if( gParse.status ) return;

this = gParse.Nodes + thisNode;
if( this->operation>0 ) { /* <=0 indicate constants and columns */
i = this->nSubNodes;
while( i-- ) {
Evaluate_Node( this->SubNodes[i] );
if( gParse.status ) return;
}
this->DoOp( this );
}
}

static void Allocate_Ptrs( Node *this )
{
long elem, row, size;

if( this->type==BITSTR || this->type==STRING ) {

this->value.data.strptr = (char**)malloc( gParse.nRows
* sizeof(char*) );
if( this->value.data.strptr ) {
this->value.data.strptr[0] = (char*)malloc( gParse.nRows
* (this->value.nelem+2)
* sizeof(char) );
if( this->value.data.strptr[0] ) {
row = 0;
while( (++row) this->value.data.strptr[row] =
this->value.data.strptr[row-1] + this->value.nelem+1;
}
if( this->type==STRING ) {
this->value.undef = this->value.data.strptr[row-1]
+ this->value.nelem+1;
} else {
this->value.undef = NULL; /* BITSTRs don't use undef array */
}
} else {
gParse.status = MEMORY_ALLOCATION;
free( this->value.data.strptr );
}
} else {
gParse.status = MEMORY_ALLOCATION;
}

} else {

elem = this->value.nelem * gParse.nRows;
switch( this->type ) {
case DOUBLE: size = sizeof( double ); break;
case LONG: size = sizeof( long ); break;
case BOOLEAN: size = sizeof( char ); break;
default: size = 1; break;
}

this->value.data.ptr = calloc(size+1, elem);

if( this->value.data.ptr==NULL ) {
gParse.status = MEMORY_ALLOCATION;
} else {
this->value.undef = (char *)this->value.data.ptr + elem*size;
}
}
}

static void Do_Unary( Node *this )
{
Node *that;
long elem;

that = gParse.Nodes + this->SubNodes[0];

if( that->operation==CONST_OP ) { /* Operating on a constant! */
switch( this->operation ) {
case DOUBLE:
case FLTCAST:
if( that->type==LONG )
this->value.data.dbl = (double)that->value.data.lng;
else if( that->type==BOOLEAN )
this->value.data.dbl = ( that->value.data.log ? 1.0 : 0.0 );
break;
case LONG:
case INTCAST:
if( that->type==DOUBLE )
this->value.data.lng = (long)that->value.data.dbl;
else if( that->type==BOOLEAN )
this->value.data.lng = ( that->value.data.log ? 1L : 0L );
break;
case BOOLEAN:
if( that->type==DOUBLE )
this->value.data.log = ( that->value.data.dbl != 0.0 );
else if( that->type==LONG )
this->value.data.log = ( that->value.data.lng != 0L );
break;
case UMINUS:
if( that->type==DOUBLE )
this->value.data.dbl = - that->value.data.dbl;
else if( that->type==LONG )
this->value.data.lng = - that->value.data.lng;
break;
case NOT:
if( that->type==BOOLEAN )
this->value.data.log = ( ! that->value.data.log );
else if( that->type==BITSTR )
bitnot( this->value.data.str, that->value.data.str );
break;
}
this->operation = CONST_OP;

} else {

Allocate_Ptrs( this );

if( !gParse.status ) {

if( this->type!=BITSTR ) {
elem = gParse.nRows;
if( this->type!=STRING )
elem *= this->value.nelem;
while( elem-- )
this->value.undef[elem] = that->value.undef[elem];
}

elem = gParse.nRows * this->value.nelem;

switch( this->operation ) {

case BOOLEAN:
if( that->type==DOUBLE )
while( elem-- )
this->value.data.logptr[elem] =
( that->value.data.dblptr[elem] != 0.0 );
else if( that->type==LONG )
while( elem-- )
this->value.data.logptr[elem] =
( that->value.data.lngptr[elem] != 0L );
break;

case DOUBLE:
case FLTCAST:
if( that->type==LONG )
while( elem-- )
this->value.data.dblptr[elem] =
(double)that->value.data.lngptr[elem];
else if( that->type==BOOLEAN )
while( elem-- )
this->value.data.dblptr[elem] =
( that->value.data.logptr[elem] ? 1.0 : 0.0 );
break;

case LONG:
case INTCAST:
if( that->type==DOUBLE )
while( elem-- )
this->value.data.lngptr[elem] =
(long)that->value.data.dblptr[elem];
else if( that->type==BOOLEAN )
while( elem-- )
this->value.data.lngptr[elem] =
( that->value.data.logptr[elem] ? 1L : 0L );
break;

case UMINUS:
if( that->type==DOUBLE ) {
while( elem-- )
this->value.data.dblptr[elem] =
- that->value.data.dblptr[elem];
} else if( that->type==LONG ) {
while( elem-- )
this->value.data.lngptr[elem] =
- that->value.data.lngptr[elem];
}
break;

case NOT:
if( that->type==BOOLEAN ) {
while( elem-- )
this->value.data.logptr[elem] =
( ! that->value.data.logptr[elem] );
} else if( that->type==BITSTR ) {
elem = gParse.nRows;
while( elem-- )
bitnot( this->value.data.strptr[elem],
that->value.data.strptr[elem] );
}
break;
}
}
}

if( that->operation>0 ) {
free( that->value.data.ptr );
}
}

static void Do_Offset( Node *this )
{
Node *col;
long fRow, nRowOverlap, nRowReload, rowOffset;
long nelem, elem, offset, nRealElem;
int status;

col = gParse.Nodes + this->SubNodes[0];
rowOffset = gParse.Nodes[ this->SubNodes[1] ].value.data.lng;

Allocate_Ptrs( this );

fRow = gParse.firstRow + rowOffset;
if( this->type==STRING || this->type==BITSTR )
nRealElem = 1;
else
nRealElem = this->value.nelem;

nelem = nRealElem;

if( fRow < gParse.firstDataRow ) {

/* Must fill in data at start of array */

nRowReload = gParse.firstDataRow - fRow;
if( nRowReload > gParse.nRows ) nRowReload = gParse.nRows;
nRowOverlap = gParse.nRows - nRowReload;

offset = 0;

/* NULLify any values falling out of bounds */

while( fRow<1 && nRowReload>0 ) {
if( this->type == BITSTR ) {
nelem = this->value.nelem;
this->value.data.strptr[offset][ nelem ] = '\0';
while( nelem-- ) this->value.data.strptr[offset][nelem] = '0';
offset++;
} else {
while( nelem-- )
this->value.undef[offset++] = 1;
}
nelem = nRealElem;
fRow++;
nRowReload--;
}

} else if( fRow + gParse.nRows > gParse.firstDataRow + gParse.nDataRows ) {

/* Must fill in data at end of array */

nRowReload = (fRow+gParse.nRows) - (gParse.firstDataRow+gParse.nDataRows);
if( nRowReload>gParse.nRows ) {
nRowReload = gParse.nRows;
} else {
fRow = gParse.firstDataRow + gParse.nDataRows;
}
nRowOverlap = gParse.nRows - nRowReload;

offset = nRowOverlap * nelem;

/* NULLify any values falling out of bounds */

elem = gParse.nRows * nelem;
while( fRow+nRowReload>gParse.totalRows && nRowReload>0 ) {
if( this->type == BITSTR ) {
nelem = this->value.nelem;
elem--;
this->value.data.strptr[elem][ nelem ] = '\0';
while( nelem-- ) this->value.data.strptr[elem][nelem] = '0';
} else {
while( nelem-- )
this->value.undef[--elem] = 1;
}
nelem = nRealElem;
nRowReload--;
}

} else {

nRowReload = 0;
nRowOverlap = gParse.nRows;
offset = 0;

}

if( nRowReload>0 ) {
switch( this->type ) {
case BITSTR:
case STRING:
status = (*gParse.loadData)( -col->operation, fRow, nRowReload,
this->value.data.strptr+offset,
this->value.undef+offset );
break;
case BOOLEAN:
status = (*gParse.loadData)( -col->operation, fRow, nRowReload,
this->value.data.logptr+offset,
this->value.undef+offset );
break;
case LONG:
status = (*gParse.loadData)( -col->operation, fRow, nRowReload,
this->value.data.lngptr+offset,
this->value.undef+offset );
break;
case DOUBLE:
status = (*gParse.loadData)( -col->operation, fRow, nRowReload,
this->value.data.dblptr+offset,
this->value.undef+offset );
break;
}
}

/* Now copy over the overlapping region, if any */

if( nRowOverlap <= 0 ) return;

if( rowOffset>0 )
elem = nRowOverlap * nelem;
else
elem = gParse.nRows * nelem;

offset = nelem * rowOffset;
while( nRowOverlap-- && !gParse.status ) {
while( nelem-- && !gParse.status ) {
elem--;
if( this->type != BITSTR )
this->value.undef[elem] = col->value.undef[elem+offset];
switch( this->type ) {
case BITSTR:
strcpy( this->value.data.strptr[elem ],
col->value.data.strptr[elem+offset] );
break;
case STRING:
strcpy( this->value.data.strptr[elem ],
col->value.data.strptr[elem+offset] );
break;
case BOOLEAN:
this->value.data.logptr[elem] = col->value.data.logptr[elem+offset];
break;
case LONG:
this->value.data.lngptr[elem] = col->value.data.lngptr[elem+offset];
break;
case DOUBLE:
this->value.data.dblptr[elem] = col->value.data.dblptr[elem+offset];
break;
}
}
nelem = nRealElem;
}
}

static void Do_BinOp_bit( Node *this )
{
Node *that1, *that2;
char *sptr1=NULL, *sptr2=NULL;
int const1, const2;
long rows;

that1 = gParse.Nodes + this->SubNodes[0];
that2 = gParse.Nodes + this->SubNodes[1];

const1 = ( that1->operation==CONST_OP );
const2 = ( that2->operation==CONST_OP );
sptr1 = ( const1 ? that1->value.data.str : NULL );
sptr2 = ( const2 ? that2->value.data.str : NULL );

if( const1 && const2 ) {
switch( this->operation ) {
case NE:
this->value.data.log = !bitcmp( sptr1, sptr2 );
break;
case EQ:
this->value.data.log = bitcmp( sptr1, sptr2 );
break;
case GT:
case LT:
case LTE:
case GTE:
this->value.data.log = bitlgte( sptr1, this->operation, sptr2 );
break;
case '|':
bitor( this->value.data.str, sptr1, sptr2 );
break;
case '&':
bitand( this->value.data.str, sptr1, sptr2 );
break;
case '+':
strcpy( this->value.data.str, sptr1 );
strcat( this->value.data.str, sptr2 );
break;
case ACCUM:
this->value.data.lng = 0;
while( *sptr1 ) {
if ( *sptr1 == '1' ) this->value.data.lng ++;
sptr1 ++;
}
break;

}
this->operation = CONST_OP;

} else {

Allocate_Ptrs( this );

if( !gParse.status ) {
rows = gParse.nRows;
switch( this->operation ) {

/* BITSTR comparisons */

case NE:
case EQ:
case GT:
case LT:
case LTE:
case GTE:
while( rows-- ) {
if( !const1 )
sptr1 = that1->value.data.strptr[rows];
if( !const2 )
sptr2 = that2->value.data.strptr[rows];
switch( this->operation ) {
case NE: this->value.data.logptr[rows] =
!bitcmp( sptr1, sptr2 );
break;
case EQ: this->value.data.logptr[rows] =
bitcmp( sptr1, sptr2 );
break;
case GT:
case LT:
case LTE:
case GTE: this->value.data.logptr[rows] =
bitlgte( sptr1, this->operation, sptr2 );
break;
}
this->value.undef[rows] = 0;
}
break;

/* BITSTR AND/ORs ... no UNDEFS in or out */

case '|':
case '&':
case '+':
while( rows-- ) {
if( !const1 )
sptr1 = that1->value.data.strptr[rows];
if( !const2 )
sptr2 = that2->value.data.strptr[rows];
if( this->operation=='|' )
bitor( this->value.data.strptr[rows], sptr1, sptr2 );
else if( this->operation=='&' )
bitand( this->value.data.strptr[rows], sptr1, sptr2 );
else {
strcpy( this->value.data.strptr[rows], sptr1 );
strcat( this->value.data.strptr[rows], sptr2 );
}
}
break;

/* Accumulate 1 bits */
case ACCUM:
{
long i, previous, curr;

previous = that2->value.data.lng;

/* Cumulative sum of this chunk */
for (i=0; i sptr1 = that1->value.data.strptr[i];
for (curr = 0; *sptr1; sptr1 ++) {
if ( *sptr1 == '1' ) curr ++;
}
previous += curr;
this->value.data.lngptr[i] = previous;
this->value.undef[i] = 0;
}

/* Store final cumulant for next pass */
that2->value.data.lng = previous;
}
}
}
}

if( that1->operation>0 ) {
free( that1->value.data.strptr[0] );
free( that1->value.data.strptr );
}
if( that2->operation>0 ) {
free( that2->value.data.strptr[0] );
free( that2->value.data.strptr );
}
}

static void Do_BinOp_str( Node *this )
{
Node *that1, *that2;
char *sptr1, *sptr2, null1=0, null2=0;
int const1, const2, val;
long rows;

that1 = gParse.Nodes + this->SubNodes[0];
that2 = gParse.Nodes + this->SubNodes[1];

const1 = ( that1->operation==CONST_OP );
const2 = ( that2->operation==CONST_OP );
sptr1 = ( const1 ? that1->value.data.str : NULL );
sptr2 = ( const2 ? that2->value.data.str : NULL );

if( const1 && const2 ) { /* Result is a constant */
switch( this->operation ) {

/* Compare Strings */

case NE:
case EQ:
val = ( FSTRCMP( sptr1, sptr2 ) == 0 );
this->value.data.log = ( this->operation==EQ ? val : !val );
break;
case GT:
this->value.data.log = ( FSTRCMP( sptr1, sptr2 ) > 0 );
break;
case LT:
this->value.data.log = ( FSTRCMP( sptr1, sptr2 ) < 0 );
break;
case GTE:
this->value.data.log = ( FSTRCMP( sptr1, sptr2 ) >= 0 );
break;
case LTE:
this->value.data.log = ( FSTRCMP( sptr1, sptr2 ) <= 0 );
break;

/* Concat Strings */

case '+':
strcpy( this->value.data.str, sptr1 );
strcat( this->value.data.str, sptr2 );
break;
}
this->operation = CONST_OP;

} else { /* Not a constant */

Allocate_Ptrs( this );

if( !gParse.status ) {

rows = gParse.nRows;
switch( this->operation ) {

/* Compare Strings */

case NE:
case EQ:
while( rows-- ) {
if( !const1 ) null1 = that1->value.undef[rows];
if( !const2 ) null2 = that2->value.undef[rows];
this->value.undef[rows] = (null1 || null2);
if( ! this->value.undef[rows] ) {
if( !const1 ) sptr1 = that1->value.data.strptr[rows];
if( !const2 ) sptr2 = that2->value.data.strptr[rows];
val = ( FSTRCMP( sptr1, sptr2 ) == 0 );
this->value.data.logptr[rows] =
( this->operation==EQ ? val : !val );
}
}
break;

case GT:
case LT:
while( rows-- ) {
if( !const1 ) null1 = that1->value.undef[rows];
if( !const2 ) null2 = that2->value.undef[rows];
this->value.undef[rows] = (null1 || null2);
if( ! this->value.undef[rows] ) {
if( !const1 ) sptr1 = that1->value.data.strptr[rows];
if( !const2 ) sptr2 = that2->value.data.strptr[rows];
val = ( FSTRCMP( sptr1, sptr2 ) );
this->value.data.logptr[rows] =
( this->operation==GT ? val>0 : val<0 );
}
}
break;

case GTE:
case LTE:
while( rows-- ) {
if( !const1 ) null1 = that1->value.undef[rows];
if( !const2 ) null2 = that2->value.undef[rows];
this->value.undef[rows] = (null1 || null2);
if( ! this->value.undef[rows] ) {
if( !const1 ) sptr1 = that1->value.data.strptr[rows];
if( !const2 ) sptr2 = that2->value.data.strptr[rows];
val = ( FSTRCMP( sptr1, sptr2 ) );
this->value.data.logptr[rows] =
( this->operation==GTE ? val>=0 : val<=0 );
}
}
break;

/* Concat Strings */

case '+':
while( rows-- ) {
if( !const1 ) null1 = that1->value.undef[rows];
if( !const2 ) null2 = that2->value.undef[rows];
this->value.undef[rows] = (null1 || null2);
if( ! this->value.undef[rows] ) {
if( !const1 ) sptr1 = that1->value.data.strptr[rows];
if( !const2 ) sptr2 = that2->value.data.strptr[rows];
strcpy( this->value.data.strptr[rows], sptr1 );
strcat( this->value.data.strptr[rows], sptr2 );
}
}
break;
}
}
}

if( that1->operation>0 ) {
free( that1->value.data.strptr[0] );
free( that1->value.data.strptr );
}
if( that2->operation>0 ) {
free( that2->value.data.strptr[0] );
free( that2->value.data.strptr );
}
}

static void Do_BinOp_log( Node *this )
{
Node *that1, *that2;
int vector1, vector2;
char val1=0, val2=0, null1=0, null2=0;
long rows, nelem, elem;

that1 = gParse.Nodes + this->SubNodes[0];
that2 = gParse.Nodes + this->SubNodes[1];

vector1 = ( that1->operation!=CONST_OP );
if( vector1 )
vector1 = that1->value.nelem;
else {
val1 = that1->value.data.log;
}

vector2 = ( that2->operation!=CONST_OP );
if( vector2 )
vector2 = that2->value.nelem;
else {
val2 = that2->value.data.log;
}

if( !vector1 && !vector2 ) { /* Result is a constant */
switch( this->operation ) {
case OR:
this->value.data.log = (val1 || val2);
break;
case AND:
this->value.data.log = (val1 && val2);
break;
case EQ:
this->value.data.log = ( (val1 && val2) || (!val1 && !val2) );
break;
case NE:
this->value.data.log = ( (val1 && !val2) || (!val1 && val2) );
break;
case ACCUM:
this->value.data.lng = val1;
break;
}
this->operation=CONST_OP;
} else if (this->operation == ACCUM) {
long i, previous, curr;
rows = gParse.nRows;
nelem = this->value.nelem;
elem = this->value.nelem * rows;

Allocate_Ptrs( this );

if( !gParse.status ) {
previous = that2->value.data.lng;

/* Cumulative sum of this chunk */
for (i=0; i if (!that1->value.undef[i]) {
curr = that1->value.data.logptr[i];
previous += curr;
}
this->value.data.lngptr[i] = previous;
this->value.undef[i] = 0;
}

/* Store final cumulant for next pass */
that2->value.data.lng = previous;
}

} else {
rows = gParse.nRows;
nelem = this->value.nelem;
elem = this->value.nelem * rows;

Allocate_Ptrs( this );

if( !gParse.status ) {

if (this->operation == ACCUM) {
long i, previous, curr;

previous = that2->value.data.lng;

/* Cumulative sum of this chunk */
for (i=0; i if (!that1->value.undef[i]) {
curr = that1->value.data.logptr[i];
previous += curr;
}
this->value.data.lngptr[i] = previous;
this->value.undef[i] = 0;
}

/* Store final cumulant for next pass */
that2->value.data.lng = previous;
}

while( rows-- ) {
while( nelem-- ) {
elem--;

if( vector1>1 ) {
val1 = that1->value.data.logptr[elem];
null1 = that1->value.undef[elem];
} else if( vector1 ) {
val1 = that1->value.data.logptr[rows];
null1 = that1->value.undef[rows];
}

if( vector2>1 ) {
val2 = that2->value.data.logptr[elem];
null2 = that2->value.undef[elem];
} else if( vector2 ) {
val2 = that2->value.data.logptr[rows];
null2 = that2->value.undef[rows];
}

this->value.undef[elem] = (null1 || null2);
switch( this->operation ) {

case OR:
/* This is more complicated than others to suppress UNDEFs */
/* in those cases where the other argument is DEF && TRUE */

if( !null1 && !null2 ) {
this->value.data.logptr[elem] = (val1 || val2);
} else if( (null1 && !null2 && val2)
|| ( !null1 && null2 && val1 ) ) {
this->value.data.logptr[elem] = 1;
this->value.undef[elem] = 0;
}
break;

case AND:
/* This is more complicated than others to suppress UNDEFs */
/* in those cases where the other argument is DEF && FALSE */

if( !null1 && !null2 ) {
this->value.data.logptr[elem] = (val1 && val2);
} else if( (null1 && !null2 && !val2)
|| ( !null1 && null2 && !val1 ) ) {
this->value.data.logptr[elem] = 0;
this->value.undef[elem] = 0;
}
break;

case EQ:
this->value.data.logptr[elem] =
( (val1 && val2) || (!val1 && !val2) );
break;

case NE:
this->value.data.logptr[elem] =
( (val1 && !val2) || (!val1 && val2) );
break;
}
}
nelem = this->value.nelem;
}
}
}

if( that1->operation>0 ) {
free( that1->value.data.ptr );
}
if( that2->operation>0 ) {
free( that2->value.data.ptr );
}
}

static void Do_BinOp_lng( Node *this )
{
Node *that1, *that2;
int vector1, vector2;
long val1=0, val2=0;
char null1=0, null2=0;
long rows, nelem, elem;

that1 = gParse.Nodes + this->SubNodes[0];
that2 = gParse.Nodes + this->SubNodes[1];

vector1 = ( that1->operation!=CONST_OP );
if( vector1 )
vector1 = that1->value.nelem;
else {
val1 = that1->value.data.lng;
}

vector2 = ( that2->operation!=CONST_OP );
if( vector2 )
vector2 = that2->value.nelem;
else {
val2 = that2->value.data.lng;
}

if( !vector1 && !vector2 ) { /* Result is a constant */

switch( this->operation ) {
case '~': /* Treat as == for LONGS */
case EQ: this->value.data.log = (val1 == val2); break;
case NE: this->value.data.log = (val1 != val2); break;
case GT: this->value.data.log = (val1 > val2); break;
case LT: this->value.data.log = (val1 < val2); break;
case LTE: this->value.data.log = (val1 <= val2); break;
case GTE: this->value.data.log = (val1 >= val2); break;

case '+': this->value.data.lng = (val1 + val2); break;
case '-': this->value.data.lng = (val1 - val2); break;
case '*': this->value.data.lng = (val1 * val2); break;

case '%':
if( val2 ) this->value.data.lng = (val1 % val2);
else yyerror("Divide by Zero");
break;
case '/':
if( val2 ) this->value.data.lng = (val1 / val2);
else yyerror("Divide by Zero");
break;
case POWER:
this->value.data.lng = (long)pow((double)val1,(double)val2);
break;
case ACCUM:
this->value.data.lng = val1;
break;
case DIFF:
this->value.data.lng = 0;
break;
}
this->operation=CONST_OP;

} else if ((this->operation == ACCUM) || (this->operation == DIFF)) {
long i, previous, curr;
long undef;
rows = gParse.nRows;
nelem = this->value.nelem;
elem = this->value.nelem * rows;

Allocate_Ptrs( this );

if( !gParse.status ) {
previous = that2->value.data.lng;
undef = (long) that2->value.undef;

if (this->operation == ACCUM) {
/* Cumulative sum of this chunk */
for (i=0; i if (!that1->value.undef[i]) {
curr = that1->value.data.lngptr[i];
previous += curr;
}
this->value.data.lngptr[i] = previous;
this->value.undef[i] = 0;
}
} else {
/* Sequential difference for this chunk */
for (i=0; i curr = that1->value.data.lngptr[i];
if (that1->value.undef[i] || undef) {
/* Either this, or previous, value was undefined */
this->value.data.lngptr[i] = 0;
this->value.undef[i] = 1;
} else {
/* Both defined, we are okay! */
this->value.data.lngptr[i] = curr - previous;
this->value.undef[i] = 0;
}

previous = curr;
undef = that1->value.undef[i];
}
}

/* Store final cumulant for next pass */
that2->value.data.lng = previous;
that2->value.undef = (char *) undef; /* XXX evil, but no harm here */
}

} else {

rows = gParse.nRows;
nelem = this->value.nelem;
elem = this->value.nelem * rows;

Allocate_Ptrs( this );

while( rows-- && !gParse.status ) {
while( nelem-- && !gParse.status ) {
elem--;

if( vector1>1 ) {
val1 = that1->value.data.lngptr[elem];
null1 = that1->value.undef[elem];
} else if( vector1 ) {
val1 = that1->value.data.lngptr[rows];
null1 = that1->value.undef[rows];
}

if( vector2>1 ) {
val2 = that2->value.data.lngptr[elem];
null2 = that2->value.undef[elem];
} else if( vector2 ) {
val2 = that2->value.data.lngptr[rows];
null2 = that2->value.undef[rows];
}

this->value.undef[elem] = (null1 || null2);
switch( this->operation ) {
case '~': /* Treat as == for LONGS */
case EQ: this->value.data.logptr[elem] = (val1 == val2); break;
case NE: this->value.data.logptr[elem] = (val1 != val2); break;
case GT: this->value.data.logptr[elem] = (val1 > val2); break;
case LT: this->value.data.logptr[elem] = (val1 < val2); break;
case LTE: this->value.data.logptr[elem] = (val1 <= val2); break;
case GTE: this->value.data.logptr[elem] = (val1 >= val2); break;

case '+': this->value.data.lngptr[elem] = (val1 + val2); break;
case '-': this->value.data.lngptr[elem] = (val1 - val2); break;
case '*': this->value.data.lngptr[elem] = (val1 * val2); break;

case '%':
if( val2 ) this->value.data.lngptr[elem] = (val1 % val2);
else {
this->value.data.lngptr[elem] = 0;
this->value.undef[elem] = 1;
}
break;
case '/':
if( val2 ) this->value.data.lngptr[elem] = (val1 / val2);
else {
this->value.data.lngptr[elem] = 0;
this->value.undef[elem] = 1;
}
break;
case POWER:
this->value.data.lngptr[elem] = (long)pow((double)val1,(double)val2);
break;
}
}
nelem = this->value.nelem;
}
}

if( that1->operation>0 ) {
free( that1->value.data.ptr );
}
if( that2->operation>0 ) {
free( that2->value.data.ptr );
}
}

static void Do_BinOp_dbl( Node *this )
{
Node *that1, *that2;
int vector1, vector2;
double val1=0.0, val2=0.0;
char null1=0, null2=0;
long rows, nelem, elem;

that1 = gParse.Nodes + this->SubNodes[0];
that2 = gParse.Nodes + this->SubNodes[1];

vector1 = ( that1->operation!=CONST_OP );
if( vector1 )
vector1 = that1->value.nelem;
else {
val1 = that1->value.data.dbl;
}

vector2 = ( that2->operation!=CONST_OP );
if( vector2 )
vector2 = that2->value.nelem;
else {
val2 = that2->value.data.dbl;
}

if( !vector1 && !vector2 ) { /* Result is a constant */

switch( this->operation ) {
case '~': this->value.data.log = ( fabs(val1-val2) < APPROX ); break;
case EQ: this->value.data.log = (val1 == val2); break;
case NE: this->value.data.log = (val1 != val2); break;
case GT: this->value.data.log = (val1 > val2); break;
case LT: this->value.data.log = (val1 < val2); break;
case LTE: this->value.data.log = (val1 <= val2); break;
case GTE: this->value.data.log = (val1 >= val2); break;

case '+': this->value.data.dbl = (val1 + val2); break;
case '-': this->value.data.dbl = (val1 - val2); break;
case '*': this->value.data.dbl = (val1 * val2); break;

case '%':
if( val2 ) this->value.data.dbl = val1 - val2*((int)(val1/val2));
else yyerror("Divide by Zero");
break;
case '/':
if( val2 ) this->value.data.dbl = (val1 / val2);
else yyerror("Divide by Zero");
break;
case POWER:
this->value.data.dbl = (double)pow(val1,val2);
break;
case ACCUM:
this->value.data.dbl = val1;
break;
case DIFF:
this->value.data.dbl = 0;
break;
}
this->operation=CONST_OP;

} else if ((this->operation == ACCUM) || (this->operation == DIFF)) {
long i;
long undef;
double previous, curr;
rows = gParse.nRows;
nelem = this->value.nelem;
elem = this->value.nelem * rows;

Allocate_Ptrs( this );

if( !gParse.status ) {
previous = that2->value.data.dbl;
undef = (long) that2->value.undef;

if (this->operation == ACCUM) {
/* Cumulative sum of this chunk */
for (i=0; i if (!that1->value.undef[i]) {
curr = that1->value.data.dblptr[i];
previous += curr;
}
this->value.data.dblptr[i] = previous;
this->value.undef[i] = 0;
}
} else {
/* Sequential difference for this chunk */
for (i=0; i curr = that1->value.data.dblptr[i];
if (that1->value.undef[i] || undef) {
/* Either this, or previous, value was undefined */
this->value.data.dblptr[i] = 0;
this->value.undef[i] = 1;
} else {
/* Both defined, we are okay! */
this->value.data.dblptr[i] = curr - previous;
this->value.undef[i] = 0;
}

previous = curr;
undef = that1->value.undef[i];
}
}

/* Store final cumulant for next pass */
that2->value.data.dbl = previous;
that2->value.undef = (char *) undef; /* XXX evil, but no harm here */
}

} else {

rows = gParse.nRows;
nelem = this->value.nelem;
elem = this->value.nelem * rows;

Allocate_Ptrs( this );

while( rows-- && !gParse.status ) {
while( nelem-- && !gParse.status ) {
elem--;

if( vector1>1 ) {
val1 = that1->value.data.dblptr[elem];
null1 = that1->value.undef[elem];
} else if( vector1 ) {
val1 = that1->value.data.dblptr[rows];
null1 = that1->value.undef[rows];
}

if( vector2>1 ) {
val2 = that2->value.data.dblptr[elem];
null2 = that2->value.undef[elem];
} else if( vector2 ) {
val2 = that2->value.data.dblptr[rows];
null2 = that2->value.undef[rows];
}

this->value.undef[elem] = (null1 || null2);
switch( this->operation ) {
case '~': this->value.data.logptr[elem] =
( fabs(val1-val2) < APPROX ); break;
case EQ: this->value.data.logptr[elem] = (val1 == val2); break;
case NE: this->value.data.logptr[elem] = (val1 != val2); break;
case GT: this->value.data.logptr[elem] = (val1 > val2); break;
case LT: this->value.data.logptr[elem] = (val1 < val2); break;
case LTE: this->value.data.logptr[elem] = (val1 <= val2); break;
case GTE: this->value.data.logptr[elem] = (val1 >= val2); break;

case '+': this->value.data.dblptr[elem] = (val1 + val2); break;
case '-': this->value.data.dblptr[elem] = (val1 - val2); break;
case '*': this->value.data.dblptr[elem] = (val1 * val2); break;

case '%':
if( val2 ) this->value.data.dblptr[elem] =
val1 - val2*((int)(val1/val2));
else {
this->value.data.dblptr[elem] = 0.0;
this->value.undef[elem] = 1;
}
break;
case '/':
if( val2 ) this->value.data.dblptr[elem] = (val1 / val2);
else {
this->value.data.dblptr[elem] = 0.0;
this->value.undef[elem] = 1;
}
break;
case POWER:
this->value.data.dblptr[elem] = (double)pow(val1,val2);
break;
}
}
nelem = this->value.nelem;
}
}

if( that1->operation>0 ) {
free( that1->value.data.ptr );
}
if( that2->operation>0 ) {
free( that2->value.data.ptr );
}
}

/*
* This Quickselect routine is based on the algorithm described in
* "Numerical recipes in C", Second Edition,
* Cambridge University Press, 1992, Section 8.5, ISBN 0-521-43108-5
* This code by Nicolas Devillard - 1998. Public domain.
* http://ndevilla.free.fr/median/median/src/quickselect.c
*/

#define ELEM_SWAP(a,b) { register long t=(a);(a)=(b);(b)=t; }

/*
* qselect_median_lng - select the median value of a long array
*
* This routine selects the median value of the long integer array
* arr[]. If there are an even number of elements, the "lower median"
* is selected.
*
* The array arr[] is scrambled, so users must operate on a scratch
* array if they wish the values to be preserved.
*
* long arr[] - array of values
* int n - number of elements in arr
*
* RETURNS: the lower median value of arr[]
*
*/
long qselect_median_lng(long arr[], int n)
{
int low, high ;
int median;
int middle, ll, hh;

low = 0 ; high = n-1 ; median = (low + high) / 2;
for (;;) {

if (high <= low) { /* One element only */
return arr[median];
}

if (high == low + 1) { /* Two elements only */
if (arr[low] > arr[high])
ELEM_SWAP(arr[low], arr[high]) ;
return arr[median];
}

/* Find median of low, middle and high items; swap into position low */
middle = (low + high) / 2;
if (arr[middle] > arr[high]) ELEM_SWAP(arr[middle], arr[high]) ;
if (arr[low] > arr[high]) ELEM_SWAP(arr[low], arr[high]) ;
if (arr[middle] > arr[low]) ELEM_SWAP(arr[middle], arr[low]) ;

/* Swap low item (now in position middle) into position (low+1) */
ELEM_SWAP(arr[middle], arr[low+1]) ;

/* Nibble from each end towards middle, swapping items when stuck */
ll = low + 1;
hh = high;
for (;;) {
do ll++; while (arr[low] > arr[ll]) ;
do hh--; while (arr[hh] > arr[low]) ;

if (hh < ll)
break;

ELEM_SWAP(arr[ll], arr[hh]) ;
}

/* Swap middle item (in position low) back into correct position */
ELEM_SWAP(arr[low], arr[hh]) ;

/* Re-set active partition */
if (hh <= median)
low = ll;
if (hh >= median)
high = hh - 1;
}
}

#undef ELEM_SWAP

#define ELEM_SWAP(a,b) { register double t=(a);(a)=(b);(b)=t; }

/*
* qselect_median_dbl - select the median value of a double array
*
* This routine selects the median value of the double array
* arr[]. If there are an even number of elements, the "lower median"
* is selected.
*
* The array arr[] is scrambled, so users must operate on a scratch
* array if they wish the values to be preserved.
*
* double arr[] - array of values
* int n - number of elements in arr
*
* RETURNS: the lower median value of arr[]
*
*/
double qselect_median_dbl(double arr[], int n)
{
int low, high ;
int median;
int middle, ll, hh;

low = 0 ; high = n-1 ; median = (low + high) / 2;
for (;;) {
if (high <= low) { /* One element only */
return arr[median] ;
}

if (high == low + 1) { /* Two elements only */
if (arr[low] > arr[high])
ELEM_SWAP(arr[low], arr[high]) ;
return arr[median] ;
}

/* Find median of low, middle and high items; swap into position low */
middle = (low + high) / 2;
if (arr[middle] > arr[high]) ELEM_SWAP(arr[middle], arr[high]) ;
if (arr[low] > arr[high]) ELEM_SWAP(arr[low], arr[high]) ;
if (arr[middle] > arr[low]) ELEM_SWAP(arr[middle], arr[low]) ;

/* Swap low item (now in position middle) into position (low+1) */
ELEM_SWAP(arr[middle], arr[low+1]) ;

/* Nibble from each end towards middle, swapping items when stuck */
ll = low + 1;
hh = high;
for (;;) {
do ll++; while (arr[low] > arr[ll]) ;
do hh--; while (arr[hh] > arr[low]) ;

if (hh < ll)
break;

ELEM_SWAP(arr[ll], arr[hh]) ;
}

/* Swap middle item (in position low) back into correct position */
ELEM_SWAP(arr[low], arr[hh]) ;

/* Re-set active partition */
if (hh <= median)
low = ll;
if (hh >= median)
high = hh - 1;
}
}

#undef ELEM_SWAP

/*
* angsep_calc - compute angular separation between celestial coordinates
*
* This routine computes the angular separation between to coordinates
* on the celestial sphere (i.e. RA and Dec). Note that all units are
* in DEGREES, unlike the other trig functions in the calculator.
*
* double ra1, dec1 - RA and Dec of the first position in degrees
* double ra2, dec2 - RA and Dec of the second position in degrees
*
* RETURNS: (double) angular separation in degrees
*
*/
double angsep_calc(double ra1, double dec1, double ra2, double dec2)
{
double cd;
static double deg = 0;
double a, sdec, sra;

if (deg == 0) deg = ((double)4)*atan((double)1)/((double)180);
/* deg = 1.0; **** UNCOMMENT IF YOU WANT RADIANS */



/*
This (commented out) algorithm uses the Low of Cosines, which becomes
unstable for angles less than 0.1 arcsec.

cd = sin(dec1*deg)*sin(dec2*deg)
+ cos(dec1*deg)*cos(dec2*deg)*cos((ra1-ra2)*deg);
if (cd < (-1)) cd = -1;
if (cd > (+1)) cd = +1;
return acos(cd)/deg;
*/

/* The algorithm is the law of Haversines. This algorithm is
stable even when the points are close together. The normal
Law of Cosines fails for angles around 0.1 arcsec. */

sra = sin( (ra2 - ra1)*deg / 2 );
sdec = sin( (dec2 - dec1)*deg / 2);
a = sdec*sdec + cos(dec1*deg)*cos(dec2*deg)*sra*sra;

/* Sanity checking to avoid a range error in the sqrt()'s below */
if (a < 0) { a = 0; }
if (a > 1) { a = 1; }

return 2.0*atan2(sqrt(a), sqrt(1.0 - a)) / deg;
}






static double ran1()
{
static double dval = 0.0;
double rndVal;

if (dval == 0.0) {
if( rand()<32768 && rand()<32768 )
dval = 32768.0;
else
dval = 2147483648.0;
}

rndVal = (double)rand();
while( rndVal > dval ) dval *= 2.0;
return rndVal/dval;
}

/* Gaussian deviate routine from Numerical Recipes */
static double gasdev()
{
static int iset = 0;
static double gset;
double fac, rsq, v1, v2;

if (iset == 0) {
do {
v1 = 2.0*ran1()-1.0;
v2 = 2.0*ran1()-1.0;
rsq = v1*v1 + v2*v2;
} while (rsq >= 1.0 || rsq == 0.0);
fac = sqrt(-2.0*log(rsq)/rsq);
gset = v1*fac;
iset = 1;
return v2*fac;
} else {
iset = 0;
return gset;
}

}

/* lgamma function - from Numerical Recipes */

float gammaln(float xx)
/* Returns the value ln Gamma[(xx)] for xx > 0. */
{
/*
Internal arithmetic will be done in double precision, a nicety
that you can omit if five-figure accuracy is good enough. */
double x,y,tmp,ser;
static double cof[6]={76.18009172947146,-86.50532032941677,
24.01409824083091,-1.231739572450155,
0.1208650973866179e-2,-0.5395239384953e-5};
int j;
y=x=xx;
tmp=x+5.5;
tmp -= (x+0.5)*log(tmp);
ser=1.000000000190015;
for (j=0;j<=5;j++) ser += cof[j]/++y;
return (float) -tmp+log(2.5066282746310005*ser/x);
}

/* Poisson deviate - derived from Numerical Recipes */
static long poidev(double xm)
{
static double sq, alxm, g, oldm = -1.0;
static double pi = 0;
double em, t, y;

if (pi == 0) pi = ((double)4)*atan((double)1);

if (xm < 20.0) {
if (xm != oldm) {
oldm = xm;
g = exp(-xm);
}
em = -1;
t = 1.0;
do {
em += 1;
t *= ran1();
} while (t > g);
} else {
if (xm != oldm) {
oldm = xm;
sq = sqrt(2.0*xm);
alxm = log(xm);
g = xm*alxm-gammaln( (float) (xm+1.0));
}
do {
do {
y = tan(pi*ran1());
em = sq*y+xm;
} while (em < 0.0);
em = floor(em);
t = 0.9*(1.0+y*y)*exp(em*alxm-gammaln( (float) (em+1.0) )-g);
} while (ran1() > t);
}

/* Return integer version */
return (long int) floor(em+0.5);
}

static void Do_Func( Node *this )
{
Node *theParams[MAXSUBS];
int vector[MAXSUBS], allConst;
lval pVals[MAXSUBS];
char pNull[MAXSUBS];
long ival;
double dval;
int i, valInit;
long row, elem, nelem;

i = this->nSubNodes;
allConst = 1;
while( i-- ) {
theParams[i] = gParse.Nodes + this->SubNodes[i];
vector[i] = ( theParams[i]->operation!=CONST_OP );
if( vector[i] ) {
allConst = 0;
vector[i] = theParams[i]->value.nelem;
} else {
if( theParams[i]->type==DOUBLE ) {
pVals[i].data.dbl = theParams[i]->value.data.dbl;
} else if( theParams[i]->type==LONG ) {
pVals[i].data.lng = theParams[i]->value.data.lng;
} else if( theParams[i]->type==BOOLEAN ) {
pVals[i].data.log = theParams[i]->value.data.log;
} else
strcpy(pVals[i].data.str, theParams[i]->value.data.str);
pNull[i] = 0;
}
}

if( this->nSubNodes==0 ) allConst = 0; /* These do produce scalars */
/* Random numbers are *never* constant !! */
if( this->operation == poirnd_fct ) allConst = 0;
if( this->operation == gasrnd_fct ) allConst = 0;
if( this->operation == rnd_fct ) allConst = 0;

if( allConst ) {

switch( this->operation ) {

/* Non-Trig single-argument functions */

case sum_fct:
if( theParams[0]->type==BOOLEAN )
this->value.data.lng = ( pVals[0].data.log ? 1 : 0 );
else if( theParams[0]->type==LONG )
this->value.data.lng = pVals[0].data.lng;
else if( theParams[0]->type==DOUBLE )
this->value.data.dbl = pVals[0].data.dbl;
else if( theParams[0]->type==BITSTR )
strcpy(this->value.data.str, pVals[0].data.str);
break;
case average_fct:
if( theParams[0]->type==LONG )
this->value.data.dbl = pVals[0].data.lng;
else if( theParams[0]->type==DOUBLE )
this->value.data.dbl = pVals[0].data.dbl;
break;
case stddev_fct:
this->value.data.dbl = 0; /* Standard deviation of a constant = 0 */
break;
case median_fct:
if( theParams[0]->type==BOOLEAN )
this->value.data.lng = ( pVals[0].data.log ? 1 : 0 );
else if( theParams[0]->type==LONG )
this->value.data.lng = pVals[0].data.lng;
else
this->value.data.dbl = pVals[0].data.dbl;
break;

case poirnd_fct:
if( theParams[0]->type==DOUBLE )
this->value.data.lng = poidev(pVals[0].data.dbl);
else
this->value.data.lng = poidev(pVals[0].data.lng);
break;

case abs_fct:
if( theParams[0]->type==DOUBLE ) {
dval = pVals[0].data.dbl;
this->value.data.dbl = (dval>0.0 ? dval : -dval);
} else {
ival = pVals[0].data.lng;
this->value.data.lng = (ival> 0 ? ival : -ival);
}
break;

/* Special Null-Handling Functions */

case nonnull_fct:
this->value.data.lng = 1; /* Constants are always 1-element and defined */
break;
case isnull_fct: /* Constants are always defined */
this->value.data.log = 0;
break;
case defnull_fct:
if( this->type==BOOLEAN )
this->value.data.log = pVals[0].data.log;
else if( this->type==LONG )
this->value.data.lng = pVals[0].data.lng;
else if( this->type==DOUBLE )
this->value.data.dbl = pVals[0].data.dbl;
else if( this->type==STRING )
strcpy(this->value.data.str,pVals[0].data.str);
break;

/* Math functions with 1 double argument */

case sin_fct:
this->value.data.dbl = sin( pVals[0].data.dbl );
break;
case cos_fct:
this->value.data.dbl = cos( pVals[0].data.dbl );
break;
case tan_fct:
this->value.data.dbl = tan( pVals[0].data.dbl );
break;
case asin_fct:
dval = pVals[0].data.dbl;
if( dval<-1.0 || dval>1.0 )
yyerror("Out of range argument to arcsin");
else
this->value.data.dbl = asin( dval );
break;
case acos_fct:
dval = pVals[0].data.dbl;
if( dval<-1.0 || dval>1.0 )
yyerror("Out of range argument to arccos");
else
this->value.data.dbl = acos( dval );
break;
case atan_fct:
this->value.data.dbl = atan( pVals[0].data.dbl );
break;
case sinh_fct:
this->value.data.dbl = sinh( pVals[0].data.dbl );
break;
case cosh_fct:
this->value.data.dbl = cosh( pVals[0].data.dbl );
break;
case tanh_fct:
this->value.data.dbl = tanh( pVals[0].data.dbl );
break;
case exp_fct:
this->value.data.dbl = exp( pVals[0].data.dbl );
break;
case log_fct:
dval = pVals[0].data.dbl;
if( dval<=0.0 )
yyerror("Out of range argument to log");
else
this->value.data.dbl = log( dval );
break;
case log10_fct:
dval = pVals[0].data.dbl;
if( dval<=0.0 )
yyerror("Out of range argument to log10");
else
this->value.data.dbl = log10( dval );
break;
case sqrt_fct:
dval = pVals[0].data.dbl;
if( dval<0.0 )
yyerror("Out of range argument to sqrt");
else
this->value.data.dbl = sqrt( dval );
break;
case ceil_fct:
this->value.data.dbl = ceil( pVals[0].data.dbl );
break;
case floor_fct:
this->value.data.dbl = floor( pVals[0].data.dbl );
break;
case round_fct:
this->value.data.dbl = floor( pVals[0].data.dbl + 0.5 );
break;

/* Two-argument Trig Functions */

case atan2_fct:
this->value.data.dbl =
atan2( pVals[0].data.dbl, pVals[1].data.dbl );
break;

/* Four-argument ANGSEP function */
case angsep_fct:
this->value.data.dbl =
angsep_calc(pVals[0].data.dbl, pVals[1].data.dbl,
pVals[2].data.dbl, pVals[3].data.dbl);

/* Min/Max functions taking 1 or 2 arguments */

case min1_fct:
/* No constant vectors! */
if( this->type == DOUBLE )
this->value.data.dbl = pVals[0].data.dbl;
else if( this->type == LONG )
this->value.data.lng = pVals[0].data.lng;
else if( this->type == BITSTR )
strcpy(this->value.data.str, pVals[0].data.str);
break;
case min2_fct:
if( this->type == DOUBLE )
this->value.data.dbl =
minvalue( pVals[0].data.dbl, pVals[1].data.dbl );
else if( this->type == LONG )
this->value.data.lng =
minvalue( pVals[0].data.lng, pVals[1].data.lng );
break;
case max1_fct:
/* No constant vectors! */
if( this->type == DOUBLE )
this->value.data.dbl = pVals[0].data.dbl;
else if( this->type == LONG )
this->value.data.lng = pVals[0].data.lng;
else if( this->type == BITSTR )
strcpy(this->value.data.str, pVals[0].data.str);
break;
case max2_fct:
if( this->type == DOUBLE )
this->value.data.dbl =
maxvalue( pVals[0].data.dbl, pVals[1].data.dbl );
else if( this->type == LONG )
this->value.data.lng =
maxvalue( pVals[0].data.lng, pVals[1].data.lng );
break;

/* Boolean SAO region Functions... scalar or vector dbls */

case near_fct:
this->value.data.log = bnear( pVals[0].data.dbl, pVals[1].data.dbl,
pVals[2].data.dbl );
break;
case circle_fct:
this->value.data.log = circle( pVals[0].data.dbl, pVals[1].data.dbl,
pVals[2].data.dbl, pVals[3].data.dbl,
pVals[4].data.dbl );
break;
case box_fct:
this->value.data.log = saobox( pVals[0].data.dbl, pVals[1].data.dbl,
pVals[2].data.dbl, pVals[3].data.dbl,
pVals[4].data.dbl, pVals[5].data.dbl,
pVals[6].data.dbl );
break;
case elps_fct:
this->value.data.log =
ellipse( pVals[0].data.dbl, pVals[1].data.dbl,
pVals[2].data.dbl, pVals[3].data.dbl,
pVals[4].data.dbl, pVals[5].data.dbl,
pVals[6].data.dbl );
break;

/* C Conditional expression: bool ? expr : expr */

case ifthenelse_fct:
switch( this->type ) {
case BOOLEAN:
this->value.data.log = ( pVals[2].data.log ?
pVals[0].data.log : pVals[1].data.log );
break;
case LONG:
this->value.data.lng = ( pVals[2].data.log ?
pVals[0].data.lng : pVals[1].data.lng );
break;
case DOUBLE:
this->value.data.dbl = ( pVals[2].data.log ?
pVals[0].data.dbl : pVals[1].data.dbl );
break;
case STRING:
strcpy(this->value.data.str, ( pVals[2].data.log ?
pVals[0].data.str :
pVals[1].data.str ) );
break;
}
break;

/* String functions */
case strmid_fct:
cstrmid(this->value.data.str, this->value.nelem,
pVals[0].data.str, pVals[0].nelem,
pVals[1].data.lng);
break;
case strpos_fct:
{
char *res = strstr(pVals[0].data.str, pVals[1].data.str);
if (res == NULL) {
this->value.data.lng = 0;
} else {
this->value.data.lng = (res - pVals[0].data.str) + 1;
}
break;
}

}
this->operation = CONST_OP;

} else {

Allocate_Ptrs( this );

row = gParse.nRows;
elem = row * this->value.nelem;

if( !gParse.status ) {
switch( this->operation ) {

/* Special functions with no arguments */

case row_fct:
while( row-- ) {
this->value.data.lngptr[row] = gParse.firstRow + row;
this->value.undef[row] = 0;
}
break;
case null_fct:
if( this->type==LONG ) {
while( row-- ) {
this->value.data.lngptr[row] = 0;
this->value.undef[row] = 1;
}
} else if( this->type==STRING ) {
while( row-- ) {
this->value.data.strptr[row][0] = '\0';
this->value.undef[row] = 1;
}
}
break;
case rnd_fct:
while( elem-- ) {
this->value.data.dblptr[elem] = ran1();
this->value.undef[elem] = 0;
}
break;

case gasrnd_fct:
while( elem-- ) {
this->value.data.dblptr[elem] = gasdev();
this->value.undef[elem] = 0;
}
break;

case poirnd_fct:
if( theParams[0]->type==DOUBLE ) {
if (theParams[0]->operation == CONST_OP) {
while( elem-- ) {
this->value.undef[elem] = (pVals[0].data.dbl < 0);
if (! this->value.undef[elem]) {
this->value.data.lngptr[elem] = poidev(pVals[0].data.dbl);
}
}
} else {
while( elem-- ) {
this->value.undef[elem] = theParams[0]->value.undef[elem];
if (theParams[0]->value.data.dblptr[elem] < 0)
this->value.undef[elem] = 1;
if (! this->value.undef[elem]) {
this->value.data.lngptr[elem] =
poidev(theParams[0]->value.data.dblptr[elem]);
}
} /* while */
} /* ! CONST_OP */
} else {
/* LONG */
if (theParams[0]->operation == CONST_OP) {
while( elem-- ) {
this->value.undef[elem] = (pVals[0].data.lng < 0);
if (! this->value.undef[elem]) {
this->value.data.lngptr[elem] = poidev(pVals[0].data.lng);
}
}
} else {
while( elem-- ) {
this->value.undef[elem] = theParams[0]->value.undef[elem];
if (theParams[0]->value.data.lngptr[elem] < 0)
this->value.undef[elem] = 1;
if (! this->value.undef[elem]) {
this->value.data.lngptr[elem] =
poidev(theParams[0]->value.data.lngptr[elem]);
}
} /* while */
} /* ! CONST_OP */
} /* END LONG */
break;


/* Non-Trig single-argument functions */

case sum_fct:
elem = row * theParams[0]->value.nelem;
if( theParams[0]->type==BOOLEAN ) {
while( row-- ) {
this->value.data.lngptr[row] = 0;
/* Default is UNDEF until a defined value is found */
this->value.undef[row] = 1;
nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if ( ! theParams[0]->value.undef[elem] ) {
this->value.data.lngptr[row] +=
( theParams[0]->value.data.logptr[elem] ? 1 : 0 );
this->value.undef[row] = 0;
}
}
}
} else if( theParams[0]->type==LONG ) {
while( row-- ) {
this->value.data.lngptr[row] = 0;
/* Default is UNDEF until a defined value is found */
this->value.undef[row] = 1;
nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if ( ! theParams[0]->value.undef[elem] ) {
this->value.data.lngptr[row] +=
theParams[0]->value.data.lngptr[elem];
this->value.undef[row] = 0;
}
}
}
} else if( theParams[0]->type==DOUBLE ){
while( row-- ) {
this->value.data.dblptr[row] = 0.0;
/* Default is UNDEF until a defined value is found */
this->value.undef[row] = 1;
nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if ( ! theParams[0]->value.undef[elem] ) {
this->value.data.dblptr[row] +=
theParams[0]->value.data.dblptr[elem];
this->value.undef[row] = 0;
}
}
}
} else { /* BITSTR */
nelem = theParams[0]->value.nelem;
while( row-- ) {
char *sptr1 = theParams[0]->value.data.strptr[row];
this->value.data.lngptr[row] = 0;
this->value.undef[row] = 0;
while (*sptr1) {
if (*sptr1 == '1') this->value.data.lngptr[row] ++;
sptr1++;
}
}
}
break;

case average_fct:
elem = row * theParams[0]->value.nelem;
if( theParams[0]->type==LONG ) {
while( row-- ) {
int count = 0;
this->value.data.dblptr[row] = 0;
nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if (theParams[0]->value.undef[elem] == 0) {
this->value.data.dblptr[row] +=
theParams[0]->value.data.lngptr[elem];
count ++;
}
}
if (count == 0) {
this->value.undef[row] = 1;
} else {
this->value.undef[row] = 0;
this->value.data.dblptr[row] /= count;
}
}
} else if( theParams[0]->type==DOUBLE ){
while( row-- ) {
int count = 0;
this->value.data.dblptr[row] = 0;
nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if (theParams[0]->value.undef[elem] == 0) {
this->value.data.dblptr[row] +=
theParams[0]->value.data.dblptr[elem];
count ++;
}
}
if (count == 0) {
this->value.undef[row] = 1;
} else {
this->value.undef[row] = 0;
this->value.data.dblptr[row] /= count;
}
}
}
break;
case stddev_fct:
elem = row * theParams[0]->value.nelem;
if( theParams[0]->type==LONG ) {

/* Compute the mean value */
while( row-- ) {
int count = 0;
double sum = 0, sum2 = 0;

nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if (theParams[0]->value.undef[elem] == 0) {
sum += theParams[0]->value.data.lngptr[elem];
count ++;
}
}
if (count > 1) {
sum /= count;

/* Compute the sum of squared deviations */
nelem = theParams[0]->value.nelem;
elem += nelem; /* Reset elem for second pass */
while( nelem-- ) {
elem--;
if (theParams[0]->value.undef[elem] == 0) {
double dx = (theParams[0]->value.data.lngptr[elem] - sum);
sum2 += (dx*dx);
}
}

sum2 /= (double)count-1;

this->value.undef[row] = 0;
this->value.data.dblptr[row] = sqrt(sum2);
} else {
this->value.undef[row] = 0; /* STDDEV => 0 */
this->value.data.dblptr[row] = 0;
}
}
} else if( theParams[0]->type==DOUBLE ){

/* Compute the mean value */
while( row-- ) {
int count = 0;
double sum = 0, sum2 = 0;

nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if (theParams[0]->value.undef[elem] == 0) {
sum += theParams[0]->value.data.dblptr[elem];
count ++;
}
}
if (count > 1) {
sum /= count;

/* Compute the sum of squared deviations */
nelem = theParams[0]->value.nelem;
elem += nelem; /* Reset elem for second pass */
while( nelem-- ) {
elem--;
if (theParams[0]->value.undef[elem] == 0) {
double dx = (theParams[0]->value.data.dblptr[elem] - sum);
sum2 += (dx*dx);
}
}

sum2 /= (double)count-1;

this->value.undef[row] = 0;
this->value.data.dblptr[row] = sqrt(sum2);
} else {
this->value.undef[row] = 0; /* STDDEV => 0 */
this->value.data.dblptr[row] = 0;
}
}
}
break;

case median_fct:
elem = row * theParams[0]->value.nelem;
nelem = theParams[0]->value.nelem;
if( theParams[0]->type==LONG ) {
long *dptr = theParams[0]->value.data.lngptr;
char *uptr = theParams[0]->value.undef;
long *mptr = (long *) malloc(sizeof(long)*nelem);
int irow;

/* Allocate temporary storage for this row, since the
quickselect function will scramble the contents */
if (mptr == 0) {
yyerror("Could not allocate temporary memory in median function");
free( this->value.data.ptr );
break;
}

for (irow=0; irow long *p = mptr;
int nelem1 = nelem;
int count = 0;

while ( nelem1-- ) {
if (*uptr == 0) {
*p++ = *dptr; /* Only advance the dest pointer if we copied */
}
dptr ++; /* Advance the source pointer ... */
uptr ++; /* ... and source "undef" pointer */
}

nelem1 = (p - mptr); /* Number of accepted data points */
if (nelem1 > 0) {
this->value.undef[irow] = 0;
this->value.data.lngptr[irow] = qselect_median_lng(mptr, nelem1);
} else {
this->value.undef[irow] = 1;
this->value.data.lngptr[irow] = 0;
}

}

free(mptr);
} else {
double *dptr = theParams[0]->value.data.dblptr;
char *uptr = theParams[0]->value.undef;
double *mptr = (double *) malloc(sizeof(double)*nelem);
int irow;

/* Allocate temporary storage for this row, since the
quickselect function will scramble the contents */
if (mptr == 0) {
yyerror("Could not allocate temporary memory in median function");
free( this->value.data.ptr );
break;
}

for (irow=0; irow double *p = mptr;
int nelem1 = nelem;

while ( nelem1-- ) {
if (*uptr == 0) {
*p++ = *dptr; /* Only advance the dest pointer if we copied */
}
dptr ++; /* Advance the source pointer ... */
uptr ++; /* ... and source "undef" pointer */
}

nelem1 = (p - mptr); /* Number of accepted data points */
if (nelem1 > 0) {
this->value.undef[irow] = 0;
this->value.data.dblptr[irow] = qselect_median_dbl(mptr, nelem1);
} else {
this->value.undef[irow] = 1;
this->value.data.dblptr[irow] = 0;
}

}
free(mptr);
}
break;
case abs_fct:
if( theParams[0]->type==DOUBLE )
while( elem-- ) {
dval = theParams[0]->value.data.dblptr[elem];
this->value.data.dblptr[elem] = (dval>0.0 ? dval : -dval);
this->value.undef[elem] = theParams[0]->value.undef[elem];
}
else
while( elem-- ) {
ival = theParams[0]->value.data.lngptr[elem];
this->value.data.lngptr[elem] = (ival> 0 ? ival : -ival);
this->value.undef[elem] = theParams[0]->value.undef[elem];
}
break;

/* Special Null-Handling Functions */

case nonnull_fct:
nelem = theParams[0]->value.nelem;
if ( theParams[0]->type==STRING ) nelem = 1;
elem = row * nelem;
while( row-- ) {
int nelem1 = nelem;

this->value.undef[row] = 0; /* Initialize to 0 (defined) */
this->value.data.lngptr[row] = 0;
while( nelem1-- ) {
elem --;
if ( theParams[0]->value.undef[elem] == 0 ) this->value.data.lngptr[row] ++;
}
}
break;
case isnull_fct:
if( theParams[0]->type==STRING ) elem = row;
while( elem-- ) {
this->value.data.logptr[elem] = theParams[0]->value.undef[elem];
this->value.undef[elem] = 0;
}
break;
case defnull_fct:
switch( this->type ) {
case BOOLEAN:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=2; while( i-- )
if( vector[i]>1 ) {
pNull[i] = theParams[i]->value.undef[elem];
pVals[i].data.log =
theParams[i]->value.data.logptr[elem];
} else if( vector[i] ) {
pNull[i] = theParams[i]->value.undef[row];
pVals[i].data.log =
theParams[i]->value.data.logptr[row];
}
if( pNull[0] ) {
this->value.undef[elem] = pNull[1];
this->value.data.logptr[elem] = pVals[1].data.log;
} else {
this->value.undef[elem] = 0;
this->value.data.logptr[elem] = pVals[0].data.log;
}
}
}
break;
case LONG:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=2; while( i-- )
if( vector[i]>1 ) {
pNull[i] = theParams[i]->value.undef[elem];
pVals[i].data.lng =
theParams[i]->value.data.lngptr[elem];
} else if( vector[i] ) {
pNull[i] = theParams[i]->value.undef[row];
pVals[i].data.lng =
theParams[i]->value.data.lngptr[row];
}
if( pNull[0] ) {
this->value.undef[elem] = pNull[1];
this->value.data.lngptr[elem] = pVals[1].data.lng;
} else {
this->value.undef[elem] = 0;
this->value.data.lngptr[elem] = pVals[0].data.lng;
}
}
}
break;
case DOUBLE:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=2; while( i-- )
if( vector[i]>1 ) {
pNull[i] = theParams[i]->value.undef[elem];
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[elem];
} else if( vector[i] ) {
pNull[i] = theParams[i]->value.undef[row];
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[row];
}
if( pNull[0] ) {
this->value.undef[elem] = pNull[1];
this->value.data.dblptr[elem] = pVals[1].data.dbl;
} else {
this->value.undef[elem] = 0;
this->value.data.dblptr[elem] = pVals[0].data.dbl;
}
}
}
break;
case STRING:
while( row-- ) {
i=2; while( i-- )
if( vector[i] ) {
pNull[i] = theParams[i]->value.undef[row];
strcpy(pVals[i].data.str,
theParams[i]->value.data.strptr[row]);
}
if( pNull[0] ) {
this->value.undef[row] = pNull[1];
strcpy(this->value.data.strptr[row],pVals[1].data.str);
} else {
this->value.undef[elem] = 0;
strcpy(this->value.data.strptr[row],pVals[0].data.str);
}
}
}
break;

/* Math functions with 1 double argument */

case sin_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
this->value.data.dblptr[elem] =
sin( theParams[0]->value.data.dblptr[elem] );
}
break;
case cos_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
this->value.data.dblptr[elem] =
cos( theParams[0]->value.data.dblptr[elem] );
}
break;
case tan_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
this->value.data.dblptr[elem] =
tan( theParams[0]->value.data.dblptr[elem] );
}
break;
case asin_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
dval = theParams[0]->value.data.dblptr[elem];
if( dval<-1.0 || dval>1.0 ) {
this->value.data.dblptr[elem] = 0.0;
this->value.undef[elem] = 1;
} else
this->value.data.dblptr[elem] = asin( dval );
}
break;
case acos_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
dval = theParams[0]->value.data.dblptr[elem];
if( dval<-1.0 || dval>1.0 ) {
this->value.data.dblptr[elem] = 0.0;
this->value.undef[elem] = 1;
} else
this->value.data.dblptr[elem] = acos( dval );
}
break;
case atan_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
dval = theParams[0]->value.data.dblptr[elem];
this->value.data.dblptr[elem] = atan( dval );
}
break;
case sinh_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
this->value.data.dblptr[elem] =
sinh( theParams[0]->value.data.dblptr[elem] );
}
break;
case cosh_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
this->value.data.dblptr[elem] =
cosh( theParams[0]->value.data.dblptr[elem] );
}
break;
case tanh_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
this->value.data.dblptr[elem] =
tanh( theParams[0]->value.data.dblptr[elem] );
}
break;
case exp_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
dval = theParams[0]->value.data.dblptr[elem];
this->value.data.dblptr[elem] = exp( dval );
}
break;
case log_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
dval = theParams[0]->value.data.dblptr[elem];
if( dval<=0.0 ) {
this->value.data.dblptr[elem] = 0.0;
this->value.undef[elem] = 1;
} else
this->value.data.dblptr[elem] = log( dval );
}
break;
case log10_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
dval = theParams[0]->value.data.dblptr[elem];
if( dval<=0.0 ) {
this->value.data.dblptr[elem] = 0.0;
this->value.undef[elem] = 1;
} else
this->value.data.dblptr[elem] = log10( dval );
}
break;
case sqrt_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
dval = theParams[0]->value.data.dblptr[elem];
if( dval<0.0 ) {
this->value.data.dblptr[elem] = 0.0;
this->value.undef[elem] = 1;
} else
this->value.data.dblptr[elem] = sqrt( dval );
}
break;
case ceil_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
this->value.data.dblptr[elem] =
ceil( theParams[0]->value.data.dblptr[elem] );
}
break;
case floor_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
this->value.data.dblptr[elem] =
floor( theParams[0]->value.data.dblptr[elem] );
}
break;
case round_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
this->value.data.dblptr[elem] =
floor( theParams[0]->value.data.dblptr[elem] + 0.5);
}
break;

/* Two-argument Trig Functions */

case atan2_fct:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=2; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( !(this->value.undef[elem] = (pNull[0] || pNull[1]) ) )
this->value.data.dblptr[elem] =
atan2( pVals[0].data.dbl, pVals[1].data.dbl );
}
}
break;

/* Four-argument ANGSEP Function */

case angsep_fct:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=4; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( !(this->value.undef[elem] = (pNull[0] || pNull[1] ||
pNull[2] || pNull[3]) ) )
this->value.data.dblptr[elem] =
angsep_calc(pVals[0].data.dbl, pVals[1].data.dbl,
pVals[2].data.dbl, pVals[3].data.dbl);
}
}
break;



/* Min/Max functions taking 1 or 2 arguments */

case min1_fct:
elem = row * theParams[0]->value.nelem;
if( this->type==LONG ) {
long minVal=0;
while( row-- ) {
valInit = 1;
this->value.undef[row] = 1;
nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if ( !theParams[0]->value.undef[elem] ) {
if ( valInit ) {
valInit = 0;
minVal = theParams[0]->value.data.lngptr[elem];
} else {
minVal = minvalue( minVal,
theParams[0]->value.data.lngptr[elem] );
}
this->value.undef[row] = 0;
}
}
this->value.data.lngptr[row] = minVal;
}
} else if( this->type==DOUBLE ) {
double minVal=0.0;
while( row-- ) {
valInit = 1;
this->value.undef[row] = 1;
nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if ( !theParams[0]->value.undef[elem] ) {
if ( valInit ) {
valInit = 0;
minVal = theParams[0]->value.data.dblptr[elem];
} else {
minVal = minvalue( minVal,
theParams[0]->value.data.dblptr[elem] );
}
this->value.undef[row] = 0;
}
}
this->value.data.dblptr[row] = minVal;
}
} else if( this->type==BITSTR ) {
char minVal;
while( row-- ) {
char *sptr1 = theParams[0]->value.data.strptr[row];
minVal = '1';
while (*sptr1) {
if (*sptr1 == '0') minVal = '0';
sptr1++;
}
this->value.data.strptr[row][0] = minVal;
this->value.data.strptr[row][1] = 0; /* Null terminate */
}
}
break;
case min2_fct:
if( this->type==LONG ) {
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=2; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.lng =
theParams[i]->value.data.lngptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.lng =
theParams[i]->value.data.lngptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( pNull[0] && pNull[1] ) {
this->value.undef[elem] = 1;
this->value.data.lngptr[elem] = 0;
} else if (pNull[0]) {
this->value.undef[elem] = 0;
this->value.data.lngptr[elem] = pVals[1].data.lng;
} else if (pNull[1]) {
this->value.undef[elem] = 0;
this->value.data.lngptr[elem] = pVals[0].data.lng;
} else {
this->value.undef[elem] = 0;
this->value.data.lngptr[elem] =
minvalue( pVals[0].data.lng, pVals[1].data.lng );
}
}
}
} else if( this->type==DOUBLE ) {
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=2; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( pNull[0] && pNull[1] ) {
this->value.undef[elem] = 1;
this->value.data.dblptr[elem] = 0;
} else if (pNull[0]) {
this->value.undef[elem] = 0;
this->value.data.dblptr[elem] = pVals[1].data.dbl;
} else if (pNull[1]) {
this->value.undef[elem] = 0;
this->value.data.dblptr[elem] = pVals[0].data.dbl;
} else {
this->value.undef[elem] = 0;
this->value.data.dblptr[elem] =
minvalue( pVals[0].data.dbl, pVals[1].data.dbl );
}
}
}
}
break;

case max1_fct:
elem = row * theParams[0]->value.nelem;
if( this->type==LONG ) {
long maxVal=0;
while( row-- ) {
valInit = 1;
this->value.undef[row] = 1;
nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if ( !theParams[0]->value.undef[elem] ) {
if ( valInit ) {
valInit = 0;
maxVal = theParams[0]->value.data.lngptr[elem];
} else {
maxVal = maxvalue( maxVal,
theParams[0]->value.data.lngptr[elem] );
}
this->value.undef[row] = 0;
}
}
this->value.data.lngptr[row] = maxVal;
}
} else if( this->type==DOUBLE ) {
double maxVal=0.0;
while( row-- ) {
valInit = 1;
this->value.undef[row] = 1;
nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if ( !theParams[0]->value.undef[elem] ) {
if ( valInit ) {
valInit = 0;
maxVal = theParams[0]->value.data.dblptr[elem];
} else {
maxVal = maxvalue( maxVal,
theParams[0]->value.data.dblptr[elem] );
}
this->value.undef[row] = 0;
}
}
this->value.data.dblptr[row] = maxVal;
}
} else if( this->type==BITSTR ) {
char maxVal;
while( row-- ) {
char *sptr1 = theParams[0]->value.data.strptr[row];
maxVal = '0';
while (*sptr1) {
if (*sptr1 == '1') maxVal = '1';
sptr1++;
}
this->value.data.strptr[row][0] = maxVal;
this->value.data.strptr[row][1] = 0; /* Null terminate */
}
}
break;
case max2_fct:
if( this->type==LONG ) {
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=2; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.lng =
theParams[i]->value.data.lngptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.lng =
theParams[i]->value.data.lngptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( pNull[0] && pNull[1] ) {
this->value.undef[elem] = 1;
this->value.data.lngptr[elem] = 0;
} else if (pNull[0]) {
this->value.undef[elem] = 0;
this->value.data.lngptr[elem] = pVals[1].data.lng;
} else if (pNull[1]) {
this->value.undef[elem] = 0;
this->value.data.lngptr[elem] = pVals[0].data.lng;
} else {
this->value.undef[elem] = 0;
this->value.data.lngptr[elem] =
maxvalue( pVals[0].data.lng, pVals[1].data.lng );
}
}
}
} else if( this->type==DOUBLE ) {
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=2; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( pNull[0] && pNull[1] ) {
this->value.undef[elem] = 1;
this->value.data.dblptr[elem] = 0;
} else if (pNull[0]) {
this->value.undef[elem] = 0;
this->value.data.dblptr[elem] = pVals[1].data.dbl;
} else if (pNull[1]) {
this->value.undef[elem] = 0;
this->value.data.dblptr[elem] = pVals[0].data.dbl;
} else {
this->value.undef[elem] = 0;
this->value.data.dblptr[elem] =
maxvalue( pVals[0].data.dbl, pVals[1].data.dbl );
}
}
}
}
break;

/* Boolean SAO region Functions... scalar or vector dbls */

case near_fct:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=3; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( !(this->value.undef[elem] = (pNull[0] || pNull[1] ||
pNull[2]) ) )
this->value.data.logptr[elem] =
bnear( pVals[0].data.dbl, pVals[1].data.dbl,
pVals[2].data.dbl );
}
}
break;

case circle_fct:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=5; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( !(this->value.undef[elem] = (pNull[0] || pNull[1] ||
pNull[2] || pNull[3] ||
pNull[4]) ) )
this->value.data.logptr[elem] =
circle( pVals[0].data.dbl, pVals[1].data.dbl,
pVals[2].data.dbl, pVals[3].data.dbl,
pVals[4].data.dbl );
}
}
break;

case box_fct:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=7; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( !(this->value.undef[elem] = (pNull[0] || pNull[1] ||
pNull[2] || pNull[3] ||
pNull[4] || pNull[5] ||
pNull[6] ) ) )
this->value.data.logptr[elem] =
saobox( pVals[0].data.dbl, pVals[1].data.dbl,
pVals[2].data.dbl, pVals[3].data.dbl,
pVals[4].data.dbl, pVals[5].data.dbl,
pVals[6].data.dbl );
}
}
break;

case elps_fct:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=7; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( !(this->value.undef[elem] = (pNull[0] || pNull[1] ||
pNull[2] || pNull[3] ||
pNull[4] || pNull[5] ||
pNull[6] ) ) )
this->value.data.logptr[elem] =
ellipse( pVals[0].data.dbl, pVals[1].data.dbl,
pVals[2].data.dbl, pVals[3].data.dbl,
pVals[4].data.dbl, pVals[5].data.dbl,
pVals[6].data.dbl );
}
}
break;

/* C Conditional expression: bool ? expr : expr */

case ifthenelse_fct:
switch( this->type ) {
case BOOLEAN:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
if( vector[2]>1 ) {
pVals[2].data.log =
theParams[2]->value.data.logptr[elem];
pNull[2] = theParams[2]->value.undef[elem];
} else if( vector[2] ) {
pVals[2].data.log =
theParams[2]->value.data.logptr[row];
pNull[2] = theParams[2]->value.undef[row];
}
i=2; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.log =
theParams[i]->value.data.logptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.log =
theParams[i]->value.data.logptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( !(this->value.undef[elem] = pNull[2]) ) {
if( pVals[2].data.log ) {
this->value.data.logptr[elem] = pVals[0].data.log;
this->value.undef[elem] = pNull[0];
} else {
this->value.data.logptr[elem] = pVals[1].data.log;
this->value.undef[elem] = pNull[1];
}
}
}
}
break;
case LONG:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
if( vector[2]>1 ) {
pVals[2].data.log =
theParams[2]->value.data.logptr[elem];
pNull[2] = theParams[2]->value.undef[elem];
} else if( vector[2] ) {
pVals[2].data.log =
theParams[2]->value.data.logptr[row];
pNull[2] = theParams[2]->value.undef[row];
}
i=2; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.lng =
theParams[i]->value.data.lngptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.lng =
theParams[i]->value.data.lngptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( !(this->value.undef[elem] = pNull[2]) ) {
if( pVals[2].data.log ) {
this->value.data.lngptr[elem] = pVals[0].data.lng;
this->value.undef[elem] = pNull[0];
} else {
this->value.data.lngptr[elem] = pVals[1].data.lng;
this->value.undef[elem] = pNull[1];
}
}
}
}
break;
case DOUBLE:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
if( vector[2]>1 ) {
pVals[2].data.log =
theParams[2]->value.data.logptr[elem];
pNull[2] = theParams[2]->value.undef[elem];
} else if( vector[2] ) {
pVals[2].data.log =
theParams[2]->value.data.logptr[row];
pNull[2] = theParams[2]->value.undef[row];
}
i=2; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( !(this->value.undef[elem] = pNull[2]) ) {
if( pVals[2].data.log ) {
this->value.data.dblptr[elem] = pVals[0].data.dbl;
this->value.undef[elem] = pNull[0];
} else {
this->value.data.dblptr[elem] = pVals[1].data.dbl;
this->value.undef[elem] = pNull[1];
}
}
}
}
break;
case STRING:
while( row-- ) {
if( vector[2] ) {
pVals[2].data.log = theParams[2]->value.data.logptr[row];
pNull[2] = theParams[2]->value.undef[row];
}
i=2; while( i-- )
if( vector[i] ) {
strcpy( pVals[i].data.str,
theParams[i]->value.data.strptr[row] );
pNull[i] = theParams[i]->value.undef[row];
}
if( !(this->value.undef[row] = pNull[2]) ) {
if( pVals[2].data.log ) {
strcpy( this->value.data.strptr[row],
pVals[0].data.str );
this->value.undef[row] = pNull[0];
} else {
strcpy( this->value.data.strptr[row],
pVals[1].data.str );
this->value.undef[row] = pNull[1];
}
} else {
this->value.data.strptr[row][0] = '\0';
}
}
break;

}
break;

/* String functions */
case strmid_fct:
{
int strconst = theParams[0]->operation == CONST_OP;
int posconst = theParams[1]->operation == CONST_OP;
int lenconst = theParams[2]->operation == CONST_OP;
int dest_len = this->value.nelem;
int src_len = theParams[0]->value.nelem;

while (row--) {
int pos;
int len;
char *str;
int undef = 0;

if (posconst) {
pos = theParams[1]->value.data.lng;
} else {
pos = theParams[1]->value.data.lngptr[row];
if (theParams[1]->value.undef[row]) undef = 1;
}
if (strconst) {
str = theParams[0]->value.data.str;
if (src_len == 0) src_len = strlen(str);
} else {
str = theParams[0]->value.data.strptr[row];
if (theParams[0]->value.undef[row]) undef = 1;
}
if (lenconst) {
len = dest_len;
} else {
len = theParams[2]->value.data.lngptr[row];
if (theParams[2]->value.undef[row]) undef = 1;
}
this->value.data.strptr[row][0] = '\0';
if (pos == 0) undef = 1;
if (! undef ) {
if (cstrmid(this->value.data.strptr[row], len,
str, src_len, pos) < 0) break;
}
this->value.undef[row] = undef;
}
}
break;

/* String functions */
case strpos_fct:
{
int const1 = theParams[0]->operation == CONST_OP;
int const2 = theParams[1]->operation == CONST_OP;

while (row--) {
char *str1, *str2;
int undef = 0;

if (const1) {
str1 = theParams[0]->value.data.str;
} else {
str1 = theParams[0]->value.data.strptr[row];
if (theParams[0]->value.undef[row]) undef = 1;
}
if (const2) {
str2 = theParams[1]->value.data.str;
} else {
str2 = theParams[1]->value.data.strptr[row];
if (theParams[1]->value.undef[row]) undef = 1;
}
this->value.data.lngptr[row] = 0;
if (! undef ) {
char *res = strstr(str1, str2);
if (res == NULL) {
undef = 1;
this->value.data.lngptr[row] = 0;
} else {
this->value.data.lngptr[row] = (res - str1) + 1;
}
}
this->value.undef[row] = undef;
}
}
break;


} /* End switch(this->operation) */
} /* End if (!gParse.status) */
} /* End non-constant operations */

i = this->nSubNodes;
while( i-- ) {
if( theParams[i]->operation>0 ) {
/* Currently only numeric params allowed */
free( theParams[i]->value.data.ptr );
}
}
}

static void Do_Deref( Node *this )
{
Node *theVar, *theDims[MAXDIMS];
int isConst[MAXDIMS], allConst;
long dimVals[MAXDIMS];
int i, nDims;
long row, elem, dsize;

theVar = gParse.Nodes + this->SubNodes[0];

i = nDims = this->nSubNodes-1;
allConst = 1;
while( i-- ) {
theDims[i] = gParse.Nodes + this->SubNodes[i+1];
isConst[i] = ( theDims[i]->operation==CONST_OP );
if( isConst[i] )
dimVals[i] = theDims[i]->value.data.lng;
else
allConst = 0;
}

if( this->type==DOUBLE ) {
dsize = sizeof( double );
} else if( this->type==LONG ) {
dsize = sizeof( long );
} else if( this->type==BOOLEAN ) {
dsize = sizeof( char );
} else
dsize = 0;

Allocate_Ptrs( this );

if( !gParse.status ) {

if( allConst && theVar->value.naxis==nDims ) {

/* Dereference completely using constant indices */

elem = 0;
i = nDims;
while( i-- ) {
if( dimVals[i]<1 || dimVals[i]>theVar->value.naxes[i] ) break;
elem = theVar->value.naxes[i]*elem + dimVals[i]-1;
}
if( i<0 ) {
for( row=0; row if( this->type==STRING )
this->value.undef[row] = theVar->value.undef[row];
else if( this->type==BITSTR )
this->value.undef; /* Dummy - BITSTRs do not have undefs */
else
this->value.undef[row] = theVar->value.undef[elem];

if( this->type==DOUBLE )
this->value.data.dblptr[row] =
theVar->value.data.dblptr[elem];
else if( this->type==LONG )
this->value.data.lngptr[row] =
theVar->value.data.lngptr[elem];
else if( this->type==BOOLEAN )
this->value.data.logptr[row] =
theVar->value.data.logptr[elem];
else {
/* XXX Note, the below expression uses knowledge of
the layout of the string format, namely (nelem+1)
characters per string, followed by (nelem+1)
"undef" values. */
this->value.data.strptr[row][0] =
theVar->value.data.strptr[0][elem+row];
this->value.data.strptr[row][1] = 0; /* Null terminate */
}
elem += theVar->value.nelem;
}
} else {
yyerror("Index out of range");
free( this->value.data.ptr );
}

} else if( allConst && nDims==1 ) {

/* Reduce dimensions by 1, using a constant index */

if( dimVals[0] < 1 ||
dimVals[0] > theVar->value.naxes[ theVar->value.naxis-1 ] ) {
yyerror("Index out of range");
free( this->value.data.ptr );
} else if ( this->type == BITSTR || this->type == STRING ) {
elem = this->value.nelem * (dimVals[0]-1);
for( row=0; row if (this->value.undef)
this->value.undef[row] = theVar->value.undef[row];
memcpy( (char*)this->value.data.strptr[0]
+ row*sizeof(char)*(this->value.nelem+1),
(char*)theVar->value.data.strptr[0] + elem*sizeof(char),
this->value.nelem * sizeof(char) );
/* Null terminate */
this->value.data.strptr[row][this->value.nelem] = 0;
elem += theVar->value.nelem+1;
}
} else {
elem = this->value.nelem * (dimVals[0]-1);
for( row=0; row memcpy( this->value.undef + row*this->value.nelem,
theVar->value.undef + elem,
this->value.nelem * sizeof(char) );
memcpy( (char*)this->value.data.ptr
+ row*dsize*this->value.nelem,
(char*)theVar->value.data.ptr + elem*dsize,
this->value.nelem * dsize );
elem += theVar->value.nelem;
}
}

} else if( theVar->value.naxis==nDims ) {

/* Dereference completely using an expression for the indices */

for( row=0; row
for( i=0; i if( !isConst[i] ) {
if( theDims[i]->value.undef[row] ) {
yyerror("Null encountered as vector index");
free( this->value.data.ptr );
break;
} else
dimVals[i] = theDims[i]->value.data.lngptr[row];
}
}
if( gParse.status ) break;

elem = 0;
i = nDims;
while( i-- ) {
if( dimVals[i]<1 || dimVals[i]>theVar->value.naxes[i] ) break;
elem = theVar->value.naxes[i]*elem + dimVals[i]-1;
}
if( i<0 ) {
elem += row*theVar->value.nelem;

if( this->type==STRING )
this->value.undef[row] = theVar->value.undef[row];
else if( this->type==BITSTR )
this->value.undef; /* Dummy - BITSTRs do not have undefs */
else
this->value.undef[row] = theVar->value.undef[elem];

if( this->type==DOUBLE )
this->value.data.dblptr[row] =
theVar->value.data.dblptr[elem];
else if( this->type==LONG )
this->value.data.lngptr[row] =
theVar->value.data.lngptr[elem];
else if( this->type==BOOLEAN )
this->value.data.logptr[row] =
theVar->value.data.logptr[elem];
else {
/* XXX Note, the below expression uses knowledge of
the layout of the string format, namely (nelem+1)
characters per string, followed by (nelem+1)
"undef" values. */
this->value.data.strptr[row][0] =
theVar->value.data.strptr[0][elem+row];
this->value.data.strptr[row][1] = 0; /* Null terminate */
}
} else {
yyerror("Index out of range");
free( this->value.data.ptr );
}
}

} else {

/* Reduce dimensions by 1, using a nonconstant expression */

for( row=0; row
/* Index cannot be a constant */

if( theDims[0]->value.undef[row] ) {
yyerror("Null encountered as vector index");
free( this->value.data.ptr );
break;
} else
dimVals[0] = theDims[0]->value.data.lngptr[row];

if( dimVals[0] < 1 ||
dimVals[0] > theVar->value.naxes[ theVar->value.naxis-1 ] ) {
yyerror("Index out of range");
free( this->value.data.ptr );
} else if ( this->type == BITSTR || this->type == STRING ) {
elem = this->value.nelem * (dimVals[0]-1);
elem += row*(theVar->value.nelem+1);
if (this->value.undef)
this->value.undef[row] = theVar->value.undef[row];
memcpy( (char*)this->value.data.strptr[0]
+ row*sizeof(char)*(this->value.nelem+1),
(char*)theVar->value.data.strptr[0] + elem*sizeof(char),
this->value.nelem * sizeof(char) );
/* Null terminate */
this->value.data.strptr[row][this->value.nelem] = 0;
} else {
elem = this->value.nelem * (dimVals[0]-1);
elem += row*theVar->value.nelem;
memcpy( this->value.undef + row*this->value.nelem,
theVar->value.undef + elem,
this->value.nelem * sizeof(char) );
memcpy( (char*)this->value.data.ptr
+ row*dsize*this->value.nelem,
(char*)theVar->value.data.ptr + elem*dsize,
this->value.nelem * dsize );
}
}
}
}

if( theVar->operation>0 ) {
if (theVar->type == STRING || theVar->type == BITSTR)
free(theVar->value.data.strptr[0] );
else
free( theVar->value.data.ptr );
}
for( i=0; i if( theDims[i]->operation>0 ) {
free( theDims[i]->value.data.ptr );
}
}

static void Do_GTI( Node *this )
{
Node *theExpr, *theTimes;
double *start, *stop, *times;
long elem, nGTI, gti;
int ordered;

theTimes = gParse.Nodes + this->SubNodes[0];
theExpr = gParse.Nodes + this->SubNodes[1];

nGTI = theTimes->value.nelem;
start = theTimes->value.data.dblptr;
stop = theTimes->value.data.dblptr + nGTI;
ordered = theTimes->type;

if( theExpr->operation==CONST_OP ) {

this->value.data.log =
(Search_GTI( theExpr->value.data.dbl, nGTI, start, stop, ordered )>=0);
this->operation = CONST_OP;

} else {

Allocate_Ptrs( this );

times = theExpr->value.data.dblptr;
if( !gParse.status ) {

elem = gParse.nRows * this->value.nelem;
if( nGTI ) {
gti = -1;
while( elem-- ) {
if( (this->value.undef[elem] = theExpr->value.undef[elem]) )
continue;

/* Before searching entire GTI, check the GTI found last time */
if( gti<0 || times[elem]stop[gti] ) {
gti = Search_GTI( times[elem], nGTI, start, stop, ordered );
}
this->value.data.logptr[elem] = ( gti>=0 );
}
} else
while( elem-- ) {
this->value.data.logptr[elem] = 0;
this->value.undef[elem] = 0;
}
}
}

if( theExpr->operation>0 )
free( theExpr->value.data.ptr );
}

static long Search_GTI( double evtTime, long nGTI, double *start,
double *stop, int ordered )
{
long gti, step;

if( ordered && nGTI>15 ) { /* If time-ordered and lots of GTIs, */
/* use "FAST" Binary search algorithm */
if( evtTime>=start[0] && evtTime<=stop[nGTI-1] ) {
gti = step = (nGTI >> 1);
while(1) {
if( step>1L ) step >>= 1;

if( evtTime>stop[gti] ) {
if( evtTime>=start[gti+1] )
gti += step;
else {
gti = -1L;
break;
}
} else if( evtTime if( evtTime<=stop[gti-1] )
gti -= step;
else {
gti = -1L;
break;
}
} else {
break;
}
}
} else
gti = -1L;

} else { /* Use "SLOW" linear search */
gti = nGTI;
while( gti-- )
if( evtTime>=start[gti] && evtTime<=stop[gti] )
break;
}
return( gti );
}

static void Do_REG( Node *this )
{
Node *theRegion, *theX, *theY;
double Xval=0.0, Yval=0.0;
char Xnull=0, Ynull=0;
int Xvector, Yvector;
long nelem, elem, rows;

theRegion = gParse.Nodes + this->SubNodes[0];
theX = gParse.Nodes + this->SubNodes[1];
theY = gParse.Nodes + this->SubNodes[2];

Xvector = ( theX->operation!=CONST_OP );
if( Xvector )
Xvector = theX->value.nelem;
else {
Xval = theX->value.data.dbl;
}

Yvector = ( theY->operation!=CONST_OP );
if( Yvector )
Yvector = theY->value.nelem;
else {
Yval = theY->value.data.dbl;
}

if( !Xvector && !Yvector ) {

this->value.data.log =
( fits_in_region( Xval, Yval, (SAORegion *)theRegion->value.data.ptr )
!= 0 );
this->operation = CONST_OP;

} else {

Allocate_Ptrs( this );

if( !gParse.status ) {

rows = gParse.nRows;
nelem = this->value.nelem;
elem = rows*nelem;

while( rows-- ) {
while( nelem-- ) {
elem--;

if( Xvector>1 ) {
Xval = theX->value.data.dblptr[elem];
Xnull = theX->value.undef[elem];
} else if( Xvector ) {
Xval = theX->value.data.dblptr[rows];
Xnull = theX->value.undef[rows];
}

if( Yvector>1 ) {
Yval = theY->value.data.dblptr[elem];
Ynull = theY->value.undef[elem];
} else if( Yvector ) {
Yval = theY->value.data.dblptr[rows];
Ynull = theY->value.undef[rows];
}

this->value.undef[elem] = ( Xnull || Ynull );
if( this->value.undef[elem] )
continue;

this->value.data.logptr[elem] =
( fits_in_region( Xval, Yval,
(SAORegion *)theRegion->value.data.ptr )
!= 0 );
}
nelem = this->value.nelem;
}
}
}

if( theX->operation>0 )
free( theX->value.data.ptr );
if( theY->operation>0 )
free( theY->value.data.ptr );
}

static void Do_Vector( Node *this )
{
Node *that;
long row, elem, idx, jdx, offset=0;
int node;

Allocate_Ptrs( this );

if( !gParse.status ) {

for( node=0; nodenSubNodes; node++ ) {

that = gParse.Nodes + this->SubNodes[node];

if( that->operation == CONST_OP ) {

idx = gParse.nRows*this->value.nelem + offset;
while( (idx-=this->value.nelem)>=0 ) {

this->value.undef[idx] = 0;

switch( this->type ) {
case BOOLEAN:
this->value.data.logptr[idx] = that->value.data.log;
break;
case LONG:
this->value.data.lngptr[idx] = that->value.data.lng;
break;
case DOUBLE:
this->value.data.dblptr[idx] = that->value.data.dbl;
break;
}
}

} else {

row = gParse.nRows;
idx = row * that->value.nelem;
while( row-- ) {
elem = that->value.nelem;
jdx = row*this->value.nelem + offset;
while( elem-- ) {
this->value.undef[jdx+elem] =
that->value.undef[--idx];

switch( this->type ) {
case BOOLEAN:
this->value.data.logptr[jdx+elem] =
that->value.data.logptr[idx];
break;
case LONG:
this->value.data.lngptr[jdx+elem] =
that->value.data.lngptr[idx];
break;
case DOUBLE:
this->value.data.dblptr[jdx+elem] =
that->value.data.dblptr[idx];
break;
}
}
}
}
offset += that->value.nelem;
}

}

for( node=0; node < this->nSubNodes; node++ )
if( OPER(this->SubNodes[node])>0 )
free( gParse.Nodes[this->SubNodes[node]].value.data.ptr );
}

/*****************************************************************************/
/* Utility routines which perform the calculations on bits and SAO regions */
/*****************************************************************************/

static char bitlgte(char *bits1, int oper, char *bits2)
{
int val1, val2, nextbit;
char result;
int i, l1, l2, length, ldiff;
char stream[256];
char chr1, chr2;

l1 = strlen(bits1);
l2 = strlen(bits2);
if (l1 < l2)
{
length = l2;
ldiff = l2 - l1;
i=0;
while( ldiff-- ) stream[i++] = '0';
while( l1-- ) stream[i++] = *(bits1++);
stream[i] = '\0';
bits1 = stream;
}
else if (l2 < l1)
{
length = l1;
ldiff = l1 - l2;
i=0;
while( ldiff-- ) stream[i++] = '0';
while( l2-- ) stream[i++] = *(bits2++);
stream[i] = '\0';
bits2 = stream;
}
else
length = l1;

val1 = val2 = 0;
nextbit = 1;

while( length-- )
{
chr1 = bits1[length];
chr2 = bits2[length];
if ((chr1 != 'x')&&(chr1 != 'X')&&(chr2 != 'x')&&(chr2 != 'X'))
{
if (chr1 == '1') val1 += nextbit;
if (chr2 == '1') val2 += nextbit;
nextbit *= 2;
}
}
result = 0;
switch (oper)
{
case LT:
if (val1 < val2) result = 1;
break;
case LTE:
if (val1 <= val2) result = 1;
break;
case GT:
if (val1 > val2) result = 1;
break;
case GTE:
if (val1 >= val2) result = 1;
break;
}
return (result);
}

static void bitand(char *result,char *bitstrm1,char *bitstrm2)
{
int i, l1, l2, ldiff;
char stream[256];
char chr1, chr2;

l1 = strlen(bitstrm1);
l2 = strlen(bitstrm2);
if (l1 < l2)
{
ldiff = l2 - l1;
i=0;
while( ldiff-- ) stream[i++] = '0';
while( l1-- ) stream[i++] = *(bitstrm1++);
stream[i] = '\0';
bitstrm1 = stream;
}
else if (l2 < l1)
{
ldiff = l1 - l2;
i=0;
while( ldiff-- ) stream[i++] = '0';
while( l2-- ) stream[i++] = *(bitstrm2++);
stream[i] = '\0';
bitstrm2 = stream;
}
while ( (chr1 = *(bitstrm1++)) )
{
chr2 = *(bitstrm2++);
if ((chr1 == 'x') || (chr2 == 'x'))
*result = 'x';
else if ((chr1 == '1') && (chr2 == '1'))
*result = '1';
else
*result = '0';
result++;
}
*result = '\0';
}

static void bitor(char *result,char *bitstrm1,char *bitstrm2)
{
int i, l1, l2, ldiff;
char stream[256];
char chr1, chr2;

l1 = strlen(bitstrm1);
l2 = strlen(bitstrm2);
if (l1 < l2)
{
ldiff = l2 - l1;
i=0;
while( ldiff-- ) stream[i++] = '0';
while( l1-- ) stream[i++] = *(bitstrm1++);
stream[i] = '\0';
bitstrm1 = stream;
}
else if (l2 < l1)
{
ldiff = l1 - l2;
i=0;
while( ldiff-- ) stream[i++] = '0';
while( l2-- ) stream[i++] = *(bitstrm2++);
stream[i] = '\0';
bitstrm2 = stream;
}
while ( (chr1 = *(bitstrm1++)) )
{
chr2 = *(bitstrm2++);
if ((chr1 == '1') || (chr2 == '1'))
*result = '1';
else if ((chr1 == '0') || (chr2 == '0'))
*result = '0';
else
*result = 'x';
result++;
}
*result = '\0';
}

static void bitnot(char *result,char *bits)
{
int length;
char chr;

length = strlen(bits);
while( length-- ) {
chr = *(bits++);
*(result++) = ( chr=='1' ? '0' : ( chr=='0' ? '1' : chr ) );
}
*result = '\0';
}

static char bitcmp(char *bitstrm1, char *bitstrm2)
{
int i, l1, l2, ldiff;
char stream[256];
char chr1, chr2;

l1 = strlen(bitstrm1);
l2 = strlen(bitstrm2);
if (l1 < l2)
{
ldiff = l2 - l1;
i=0;
while( ldiff-- ) stream[i++] = '0';
while( l1-- ) stream[i++] = *(bitstrm1++);
stream[i] = '\0';
bitstrm1 = stream;
}
else if (l2 < l1)
{
ldiff = l1 - l2;
i=0;
while( ldiff-- ) stream[i++] = '0';
while( l2-- ) stream[i++] = *(bitstrm2++);
stream[i] = '\0';
bitstrm2 = stream;
}
while( (chr1 = *(bitstrm1++)) )
{
chr2 = *(bitstrm2++);
if ( ((chr1 == '0') && (chr2 == '1'))
|| ((chr1 == '1') && (chr2 == '0')) )
return( 0 );
}
return( 1 );
}

static char bnear(double x, double y, double tolerance)
{
if (fabs(x - y) < tolerance)
return ( 1 );
else
return ( 0 );
}

static char saobox(double xcen, double ycen, double xwid, double ywid,
double rot, double xcol, double ycol)
{
double x,y,xprime,yprime,xmin,xmax,ymin,ymax,theta;

theta = (rot / 180.0) * myPI;
xprime = xcol - xcen;
yprime = ycol - ycen;
x = xprime * cos(theta) + yprime * sin(theta);
y = -xprime * sin(theta) + yprime * cos(theta);
xmin = - 0.5 * xwid; xmax = 0.5 * xwid;
ymin = - 0.5 * ywid; ymax = 0.5 * ywid;
if ((x >= xmin) && (x <= xmax) && (y >= ymin) && (y <= ymax))
return ( 1 );
else
return ( 0 );
}

static char circle(double xcen, double ycen, double rad,
double xcol, double ycol)
{
double r2,dx,dy,dlen;

dx = xcol - xcen;
dy = ycol - ycen;
dx *= dx; dy *= dy;
dlen = dx + dy;
r2 = rad * rad;
if (dlen <= r2)
return ( 1 );
else
return ( 0 );
}

static char ellipse(double xcen, double ycen, double xrad, double yrad,
double rot, double xcol, double ycol)
{
double x,y,xprime,yprime,dx,dy,dlen,theta;

theta = (rot / 180.0) * myPI;
xprime = xcol - xcen;
yprime = ycol - ycen;
x = xprime * cos(theta) + yprime * sin(theta);
y = -xprime * sin(theta) + yprime * cos(theta);
dx = x / xrad; dy = y / yrad;
dx *= dx; dy *= dy;
dlen = dx + dy;
if (dlen <= 1.0)
return ( 1 );
else
return ( 0 );
}

/*
* Extract substring
*/
int cstrmid(char *dest_str, int dest_len,
char *src_str, int src_len,
int pos)
{
/* char fill_char = ' '; */
char fill_char = '\0';
if (src_len == 0) { src_len = strlen(src_str); } /* .. if constant */

/* Fill destination with blanks */
if (pos < 0) {
yyerror("STRMID(S,P,N) P must be 0 or greater");
return -1;
}
if (pos > src_len || pos == 0) {
/* pos==0: blank string requested */
memset(dest_str, fill_char, dest_len);
} else if (pos+dest_len > src_len) {
/* Copy a subset */
int nsub = src_len-pos+1;
int npad = dest_len - nsub;
memcpy(dest_str, src_str+pos-1, nsub);
/* Fill remaining string with blanks */
memset(dest_str+nsub, fill_char, npad);
} else {
/* Full string copy */
memcpy(dest_str, src_str+pos-1, dest_len);
}
dest_str[dest_len] = '\0'; /* Null-terminate */

return 0;
}


static void yyerror(char *s)
{
char msg[80];

if( !gParse.status ) gParse.status = PARSE_SYNTAX_ERR;

strncpy(msg, s, 80);
msg[79] = '\0';
ffpmsg(msg);
}