Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.astro-soc.odessa.ua/Public-2014.pdf
Äàòà èçìåíåíèÿ: Tue Dec 16 00:19:01 2014
Äàòà èíäåêñèðîâàíèÿ: Sat Apr 9 22:25:48 2016
Êîäèðîâêà:
ABSTRACTS
14-th Odessa International Astronomical Gamow Conference-School "Astronomy and beyond: Astrophysics, Cosmology and Gravitation, Cosmomicrophysics, Radio-astronomy and Astrobiology"
(Ukraine, Odessa, Chernomorka, 17-24 August, 2014)
100- ..p « », . .., , 27 2014 100- () , , . .. , . 1937 , . -. 1937 , .. , , . 1988 , . ( ) . , ( ), , . .. , . , , , , , 1940 , . , 6 (, , , , -), , . 1941-1945 1946 . .. 1 1984 .

17



: " " .. , , ­ ("" ( AM Her), "" (BY Cam), "" (DQ Her) ; (DO Dra), "" (TT Ari) (V368 Peg) ); ("" ""); ( EA, EB, EW), , ; ( V361 Lyr); ­ Sct, RR Lyr, RV Tau, (SR), (M). . "Inter ­ Longitude Astronomy". , , ( ) . ­, ­, ­, ­ . , (wavelet), , ­ . . 337 , ADS. 67P/­: ? .. 957 «» 20 2014 , , , "" , . 67P/- 20 21 Optical, Spectroscopic and Infrared Rem ote Imaging Syst em (OSIRIS). 67P 60 300 . 20 , , , . , 4 .. . M107, 1782 . 8.85 20900 , 720 67P/Churyumov-Gerasimenko 27 4 2014 , 5 . 2 . . , 67P/Churyumov-Gerasimenko 10- , 30 2014 OSIRIS (), 1300 . ( Rosetta a). , . , ­ . , . , 2014 . . , . 2014 . - . 300 , .. 26 . , , , . , . 4 11 2014 . 11 12.4 . ? , , , -

18


? , . . , , «», «». , - - , . () , , , 30 4 .. - , : " 67P/- . , . ­ . , , , , , . , . ? , Rosetta " - , . 11 2014 . , , . , 2 (. ). , , . Rosetta , , , 2 . , 22 4000 , 2 -1 -2 1986 . 67P/ -: , , . . , !

MAGNETIC FIELDS IN SOLAR ACTIVE REGIONS V.G.Lozitsky Taras Shevchenko National University of Kyiv, Astronomical Observatory lozitsky@observ.univ.kiev.ua, lozitsky_v@ukr.net Magnetic field measurements in solar active regions carry out on a base of the Zeeman effect. The simplest case of this effect is observed in great sunspots where the full Zeeman splitting in some spectral lines allows to measure local magnetic fields. According to direct data, magnetic field strength is here, as rule, 2200-2900 G, and sometimes 3000-4000 G. The strongest magnetic field in a sunspot was 6100 G. Substantial problems with measurements of local magnetic fields occur in the following cases: a) magnetic structures of subtelescopic size and small filling factor inside instrument's aperture, b) solar flares, where strong and rapid thermodynamical effects occur, with possible inversion from absorption to emissive manifestation of the Zeeman effect, and c) strong mixedpolarity and subtelescopic fields with absorption-emissive manifestations in spectral magnetosensitive lines. All above named cases is planned to discuss as well as the most important results obtained by different methods. In particular, the interest will be focused on problem of `superstrong' magnetic fields in flares (104 G). Existence of such magnetic fields follows from a presence in the flares of weak polarization effects even in spectral magnetosensitive lines with very small Lande factors, about 0.01. As to MHD theory, such extremely strong magnetic fields can not occur in the simplest case of untwisted magnetic fluxtube. However, such fields can arise up in some types of forcefree configurations with a multi-layered structure and alternation of opposite polarities. EXCESS OF BARIUM: INTRIGUING PROBLEM IN OPEN CLUSTERS T.V. Mishenina « » . .. Barium is a neutron capture element, which has a large scatter in its abundance values in open cluster stars and is typicall y overabundant relative to the sun. The origin of such overabundance is not clearly understood. We have determined the Y, La, Ba and Eu abundances for 13 open clusters using high-resolution spectra obtained with the UVES spectrograph at ESO Paranal. The available literature data for more than 50 OCs were also applied to study the reasons of the Ba overabundance. The determination errors and dependence of the elemental abundance on metallicity, age and kinematic parameters were analysed. The OCs' Ba overabundance-atage trend was confirmed. The observational data were discussed within the framework of stellar nucleosynthesis. EXOPLANETS AROUND K-GIANTS
1

Mkrtichian D.E.1,2 National Astronomical Research Institute of Thailand, Thailand 2 Crimean Astrophysical Observatory, Ukraine

I will present a review on recent discoveries of exoplanets around K-giants and Doppler spectroscop y

19


technique for their detection. I will discuss the distribution of periods of exoplanets and strong deficiency of shortperiod exoplanets in K-giant systems. K-giants periodic low amplitude radial velocit y variations caused by pulsations and spots should be also discussed. SEARCHING FOR THE HIGGS BOSON AT THE CERN LHC Christophe Royon CEN Saclay The Higgs mechanism in particle physics is briefly introduced and the recent Higgs boson discovery at the LHC by the ATLAS and the CMS experiments is presented. POST-INFLATIONARY PREHEATING Igor Rudenok 1, Yuri Shtanov 2,1, Stanislav Vilchinskii 1 Department of Physics, Taras Shevchenko National University, Kiev, Ukraine, 2 Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
1

Particle production in the background of an external classical oscillating field is a key process describing the stage of preheating after inflation. For sufficiently strong couplings between the inflaton and matter fields, this process proceeds non-perturbatively. Parametric resonance plays crucial role for bosonic fields in this case [1], and the evolution of the occupation numbers for fermions is non-perturbative as well [2]. In the Minkowski space, parametric resonance for bosons and non-perturbative effects for fermions would still persist even in the case of weak coupling. In particular, the energy density of created bosons would grow exponentially with time. However, the situation is quite different in the expanding universe. We give a simple demonstration [3] how the conditions of the expanding universe, specificall y, redshift of the field modes, lead to the usual perturbative expressions for particle production by an oscillating inflaton in the case of weak couplings. The results that we obtain are relevant and fully applicable to the Starobinsky model of inflation.
1. Y. Shtanov, J. H. Traschen, R. H. Brandenberger, Phys. Rev. D 51, 5438 (1995). 2. P. B. Greene, L. Kofman, Phys. Rev. D 62, 123516 (2000). 3. I. Rudenok, Yu. Shtanov, S. Vilchinskii, Phys. Lett. B 733, 193 (2014).

. Sp(NS) 12-24 (1874-2014 .), W(N-S) 22-24 (1992-2014 .), FI(N-S) 20-24 (1966-2010 .) [1-2] , « » . N S ( W-N-S), ( Sp-N-S) ( FI-N-S). N S . N-S . . N S , - .
1. .., ... . . » », , 2009, .121-135 2. .., .., .., ... - . , « - ­ 2013», -, 2013, 235-239.

.. - , (27,3 .). 11 . - , ­ . , , , .

­ .. «-4» , , , . . , -

20


MICROLENSING OF A DISTANT SOURCE BY A SYSTEM OF POINT AND EXTENDED MASSES Sliusar V.M. 1, Zhdanov V.I. 1, Alexandrov A.N. 1, Fedorova E.V. 1,2 1 Astronomical Observatory, Taras Shevchenko National University of Kyiv, Ukraine 2 Dept. of Astrophysics, Geophysics and Oceanography, University of LiÕge, Belgium We study a gravitational microlensing of a distant source by point and extended masses. The problem is of interest for testing models of dark matter that predict existence of extended structures having different masses and sizes (dark matter clumps). We discuss photometric and astrometric signatures that can distinguish the extended masses (clumps) from point-mass microlenses (stars). First, we consider the microlensing by separate circularly symmetrical clumps having different mass distribution. Then we consider statistical problems of microlensing by a system of st ochastically distributed point masses and extended clumps. The autocorrelation functions of the "observed" light curves are derived for different contributions of the clumps and the point masses.
1 2

, . 90 , III ­ (/ ­ 92). : . 1 , . 2 , , ai.zhuk2@gmail.com 2 CREST and NASA research centers, North Carolina Central University, Duhram, NC, U.S.A maxim.eingorn@gmail.com
1

.. 1,2, .. 1 , . .. ,

, 190 . : , . . . , , , , . . , . . 1, . . 1, 2, . . 3 1 « », . .., , 2 , . .., , 3 , , - () , . (, ) / . , , . , , , . , .

, , . - -2 , . . , . (10-100 ), .
1 2

.. 1,2, .. 1 , . .. ,

.

21


,

DIFFERENT APPROACHES FOR DARK MATTER HALOS OF CLUSTERS OF GALAXIES R. Brilenkov1, M. Eingorn2 and A. Zhuk3 Department of Theoretical Physics, Odessa National University, st. Dvoryanskaya 2, 65082 Odessa, Ukraine ruslan.brilenkov@gmail.com 2 CREST and NASA research centers, North Carolina Central University, Duhram, NC, U.S.A. maxim.eingorn@gmail.com 3 Astronomical Observatory, Odessa National University, st. Dvoryanskaya 2, 65082 Odessa, Ukraine ai.zhuk2@gmail.com
1

.. , , , : 10120 . , . , ­ ­ () =6,09·10-30/3, WMAP-9 PLANK. « » .. , , .. , .. . [13] . Rr1,3, . , « » RRr, . , , , , , , , , , .
1. ., .. Astrofizika 49 5 (2006) [Karachentsev I.D, Kashlbadze .G. Astrophysics 49 3 (2006)]. 2. .. 183 741­747 (2013). 3. .. // . -- 2013. -- 3. -- . 5­9.

To describe the density profile of dark matter halos of clusters of galaxies, we compare the approach based on the Schwarzschild-de Sitter metric with a recently developed mechanical one (discrete cosmol ogy inside the cell of uniformity). In the first approach, the cosmological effects are completel y incorporated into the cosm ological constant, while in the second one the scale factor enters directly the corresponding equations. Hence, in the latter case we can take into account the effect on the density profiles not only the cosmological constant, but also other material components. Thus, we can evaluate how this dynamic impact is considerable and testable.

SCALAR PERTURBATIONS AND THE GALAXY ROTATION CURVE PROBLEM IN COSMOLOGICAL MODELS WITH Q UARK NUGGETS Maxim Brilenkov1, Maxim Eingorn2,3, Laszlo Jenkovszky4, Alexander Zhuk3 1 Department of Theoretical Physics, Odessa National University, st. Dvoryanskaya 2, Odessa 65082, Ukraine 2 CREST and NASA research centers, North Carolina Central University, Duhram, NC, U.S.A. 3 Astronomical Observatory, Odessa National University, st. Dvoryanskaya 2, 65082 Odessa, Ukraine 4 BITP, Academy of Sciences of Ukraine, 03680 Kiev, Ukraine; Wigner Research Centre for Physics, Budapest, Hungary Considering the Universe at the late stage of its evolution and deep inside the cell of uniformity, we investigated the compatibility of quark-gluon nuggets with the observations. Taking into account radiation, we considered the scalar perturbations of the FRW metrics due to inhomogeneities (galaxies, groups and clusters of galaxies) of dustlike matter as well as fluctuations of QNs and radiation. Our analysis indicates that cosmological models with QNs can be compatible with observations.

22


.. , , ­ . , , . , , , , n- , . COSMOLOGICAL PERTURBATIONS IN PRESENCE OF SCALAR FIELDS Burgazli A.Yu. 1, Eingorn M.V. 2, Zhuk A.I. 3 Department of Theoretical Physics, Odessa National University 2 North Carolina Central University Astronomical Observatory, Odessa National University
1

COSMOLOGICAL MODELS WITH NONLINEAR EQ UATIONS OF STATE Jenkovszky L.L. 1, Zhdanov V.I. 2 Bogoliubov institute for theoretical physics, Kiev, Ukraine Astronomical Observatory, Taras Shevchenko National University of Kyiv, Ukraine
1

2

3

Scenarios of the cosmological evolution are studied using general models of equation of state (EoS) having points where the specific enthalpy of the cosmological fluid vanishes. The investigation concerns known nonlinear EoS's used in dynamical Dark Energy models to describe very early Universe, and uses some ideas inspired by the phenomenological "quark bag" model. We present a general consideration of a large class of barotropic EoS's that admit, depending upon initial conditions, analogues of the ``Big Rip", as well as solutions describing exponential inflation followed by usual matter dominance. A classification of possible scenarios is proposed. We discuss some extensions to more general two-parametric EoS dealing with a preinflationary evolution and yielding stages with both increasing and decreasing energy density as a function of time. Possible cosmological scenarios with transitions from collapse to an expanding Universe or a closed oscillating one, without reaching a singularity are included.
1 2

We investigate the role of the scalar field assuming its presence at late stages of the Universe evolution together with dust presented by a system of an arbitrary number of gravitating masses (galaxies and their groups) and the cosmological constant in the framework of the theory of scalar cosmol ogical perturbations. In particular, we discuss the case of the homogeneous scalar field and its possibl e influence on the gravitational potentials representing metric perturbations. We also focus attention on the interconnection bet ween the astrophysical problem and the cosmological one in the scalar field presence. ENVIRONMENTAL PROPERTIES OF GALAXIES FROM SDSS VIA VORONOI TESSELLATION
1

.. 1, .. 2 , ,

2

Dobrycheva D.1, Melnyk O.2,3, Elyiv A.1,3, Vavilova I.1 Main Astronomical Observatory of National Academy of Sciences of Ukraine Astronomical Observatory, Taras Shevchenko National University of Kyiv 3 Dipartimento di Fisica e Astronomia, Universita di Bologna

The aim of our work was to compare the physical properties of SDSS DR9 galaxies in different local environment. For the definition of the environment density we used the Voronoi tessellation. We have constructed the 3D Voronoi tessellation in the space of sample and considered an inverse volume of Voronoi cell like a local density in the given area of the cell. It allowed us to inspect the morphology ­ density relation. We found that the early t ype galaxies locate in more denser environment.

() , . -, , , [1], , [2]. , .
1. .. . ­ .: , 1995. ­ 88 . 2. .., .., .. // 14- , 2014.

23


.., .., .. . .., , [1], . [2] -, , : , ( ), , . - , , , , , . 4- , , , , . , ( -), . , , , -. , .
1. .., .. . ­ : 2, 2006. ­ 493. 2. .., .., .. // 13- -, 2013.

­ , ­ .. - , , ( ), , . 4- , ( , ). , , , . . . .. , () (). , V0 . V0 . , , . , , , , . , . , [1], . , .
1. Oleinik V.P. Quantum theory of self-organizing electrically charged particles. Soliton model of electron. // Proceedings of the NATO-ASI "Electron theory and quantum electrodynamics. 100 years later." ­ N.-Y.: Plenum Press, 1997. ­ P. 261-278.

.. . .., , () , , , : -

24


.. , , : , , ­ . [1], , ; . , , () [2]. ­ , . , , , , . , , , , . , , , .
1. . . ­ .: «», 1987. ­ . 33­34. 2. Oleinik V.P. The Problem of Electron and Superluminal Signals. (Contemporary Fundamental Physics) (Nova Science Publishers, Inc., Huntington, New York, 2001), 229 pages.

, - . , PF [4]. : , . 492 PF.
1. 2. 3. 4. Panko E., Flin P. // J. Astr. Data, 2006, V. 12, P. 1. Bautz P., Morgan W.W. // ApJ, 1970, V. 162, L.149. Abell G.O., Corwin H.G., Olowin R.P. // ApJS, 1989, V.70, P. 1. Panko, E. // 2013. Odessa Astronomical Publication, 2013, V. 26 P. 90.

THE ORIENTATIONS OF GALAXIES IN PF RICH GALAXY CLUSTERS WITH DIFFERENT MORPHOLOGICAL TYPES Panko E. 1, Godlowski W. 2, Flin P. 3, Gotsulyak . 4 Nikolaev National University, Kalinenkov Astronomical Observatory, Nikolaev, Ukraine 2 Uniwersytet Opolski, Institute of Physics, Opole, Poland 3 Jan Kochanowski University, Institute of Physics, Kielce, Poland 4 Odessa National University, Astronomical Department, Odessa, Ukraine
1

PF . 1, . 2, . 2 1 . .., ..., 2 . .., , , . PF [1], , [2], [3] PF[1]. , 1745 PF, 50, ACO , , 579. -

The morphological types of galaxy clusters resulting from their outward appearance are physically related to the clusters and their member galaxies. Taking into account the Abell, Zwicky et al., Bautz-Morgan and Rood-Sastry schemes, we created the adopted morphological types based on concentration, flatness and BG positions [2, 3]. From concentration to the cluster center we selected C ­ compact, I ­ intermediate and O ­ open clusters. Flatness as sign of the presence of preferential direction or plane in cluster was noted as L ­ line or F ­ flat. Other peculiarities in clusters were noted as P. According the adopted scheme we determined the morphological types for 247 rich galaxy clusters of PF Catalogue [1]. Using the distributions of supergalactic position angle and polar and azimuthal angles of galaxies from Godlowski et al. [4] we found: 1. The direction of major axis of the best-fit ellipse for cluster (calculated in PF catalogue) is close to direction determined for L or F region; the difference bet ween these directions increases for O-type galaxy clusters. 2. The distributions of orientation of galaxies in the clusters differ for different morphological types: the number of random values of supergalactic position angle and polar angle of galaxies increase from C to O type. 3. The part of L and F clusters with random distributions of polar and azimuthal angles of galaxies is about 10%.
1. Panko, E., Flin, P. // J. Astr. Data, 2006, V. 12, P. 1. 2. Panko, E. // 2013. Odessa Astronomical Publication, 2013, V. 26 P. 90. 3. Panko, E., Bajan, K., Gotsulyak, A. // in: The Proceedings of the IAU Symposium 308 "The Zeldovich Universe: Genesis and Growth of the Cosmic Web". Eds. R. van de Weygaert, S. Shandarin, E. Saar & Jaan Einasto. 2014, in preparation. 4. Godlowski, W., Piwowarska, P., Panko, E., Flin, P. // Astrophys. J., 2010, V. 723, P. 985.

25


NEUTRINO IN GRAVITATIONAL FIELD Plyatsko R.M., Fenyk M.T. Pidstryhach Institute for Applied Problems in Mechanics and Mathematics of National Academy of Sciences, Ukraine The spin-gravity coupling for a highly relativistic neutrino with nonzero mass according to the classical MathissonPapapetrou [1] and general relativistic Dirac equations is considered. It is stressed that the behavior of a neutrino in the highly relativistic regime in the gravitational field is significantly different from usual situations [1, 2]. Possible corrections to the known Dirac equation for more adequate description of neutrinos in strong gravitational fields is considered. Some numerical estimates are presented.
1. Mathisson M. // Acta Phys. Pol. 1937. V. 6. No.3. 163. 2. Plyatsko R.M., Fenyk M.T. // Phys. Rev. D, 2012. V. 85. 104023. 3. Plyatsko R.M., Fenyk M.T. // Phys. Rev. D, 2013. V. 87. 044019.

tion. One of the methods for studying the space-time near black holes is the motion analysis of test particles. In this study, we revealed the dependence of coordinate time of the fall of massive particles from the polar angle. The coordinate time increases with a decrease in the polar angle, i.e. the astronaut falling in the equatorial plane, will fall faster than the astronaut falling near the poles. However, when approaching the horizon, the coordinate time of the particles located in different planes, will tend to infinity. From what has been said, we can conclude that the spherical at infinity shell falling into a black hole will be deformed and at some instant it will take an ellipsoidal shape with the major axis parallel to the axis of rotation. But approaching the horizon, the shell will again become spherical. From the standpoint of proper time, there will be a similar situation, except the situation occurring proximately at the horizon. Considering the proper time of the particles, the shell will cross the horizon in the deformed state.
1

() ­ Z . . - , , , . , , , . , N~105. , : t = 1013 . :
t ­ R ­ N ­ - z ­

..1, ..2, ..1 , 2 CREST and NASA Research Centers, North Carolina Central University, Durham, North Carolina, U.S.A.

10 10 10 10 10 10

18 17 16 15 14 13



10 10 10 10 10 10

28 27 26 25 24 23



105 104 103 102 10 1

0z1 z = 10 z = 10 z = 10
2 3

FALLING THE SPHERICALLY SYMMETRICAL SHELL IN THE KERR METRIC Rasulova A.M. Herzen State Pedagogical University of Russia, St.Peterburg Now, in connection with the study of active galactic nuclei, the investigation of the Einstein's equation static solutions is relevant. The most physically real solution from stationary ones is the Kerr's solution, which takes into account the intrinsic angular momentum of body rota-

, , , CP- . , , , , . , « ­ » , , , , (, ) « » (, , ). , , , , («») (, ), . , , , , , , . , , - , -

26


, , . CREATION OF 2-5 AND 5-10 keV SKY MAPS USING XMM-NEWTON ARCHIVAL OBSERVATIONS AND THEIR APPLICATION TO STUDY OF EXTRAGALACTIC X-RAY BACKGROUND Savchenko D.O., Iakubovskyi D.A. Bogolyubov Institute for Theoretical Physics of the NAS of Ukraine Sky maps are powerful visualization tools for quicklook analysis of extended sources. An example of such map for X-ray astronomy is all-sky map in 0.1-2.4 keV band made by ROSAT X-ray satellite [1] observations. In this talk, we present the new sky maps in two energy bands ­ 2-5 and 5-10 keV (complementary to ROSAT data) obtained using publicly available data of the MOS camera on-board XMM-Newton X-ray observatory [2]. We used more than 4100 observations with total cleaned exposure of about 80 Msec. Special attention is paid to quantitative analysis of faint extended regions. The obtained maps are included to web-interface of Virtual Roentgen and Gamma-Ray Observatory in Ukraine, http://skyview.virgoua.org. We also discuss the applications of such a maps to study of physical properties of hard X-ray background, including Fe Kalpha line tomography of large-scale structure proposed in the paper [3].
1. S.L. Snowden et al., ApJ 454 (Dec., 1995) 643 2. D.O. Savchenko, D.A. Iakubovskyi "Creation of 2-5 and 510 keV sky maps using XMM-Newton archival observations", submitted to AASP 3. HÝtsi, G.; Gilfanov, M.; Sunyaev, R., Astronomy & Astrophysics, Volume 547, id.A21 12 pp.

(- ). , , ( ). , , . , , .
1. . . // , 2002, .: . 234 . 2. .. // , 2007, .: , . 486 . 3. .., .., .. // , 2014.

DETERMINATION OF DARK MATTER TYPE BY X-RAY SOURCES STATISTICS Tugay A. Taras Shevchenko Kyiv National University, Astronomy and Space Physics, tugay.anatoliy@gmail.com Current cosmological model includes cold dark matter, which consist of massive nonrelativistic particles. There are also some observational and theoretical evidences for warm dark matter. The existence of warm DM can be examined by measuring of density profiles of galaxy clusters and accurate counting of dwarf galaxies. In this work I suppose that DM haloes are well traced by X-ray gas in clusters, groups, pairs and even single galaxies. The t ype of DM is inspected with Xgal sample of 5021 X-ray emitting galaxies observed by XMM-Newt on. Selection bias of this sample is also analyzed. . . 1, ..2, . . 3 « », . .., , , . .., , , ,
1

.. . .. . , . .. , . .. , [1,2], , , . . () , , , [3]. - ,

2 3

5- - , , . , . , , . , , .

27



. . . .. , . , SEGUE, RAVE , , Gaia. RAVE SEGUE. RAVE . ( ) , [1]. SEGUE. , [2] 9 . , . , , [3].
1. Golubov O., Just A., BienaymÈ O., Bland-Hawthorn J., Gibson B. K., et al. // A&A, 2013. V. 557, p. 92 2. Sofue Y., Honma M., Omodaka T. // PASJ, 2009. V. 61, p. 283 2. Golubov O. Modelling the Milky Way Disc (PhD thesis) -- Heidelberg, 2012

- 1995, 2003 2005 . , . 2003 2005 1995 . . EXPLOSIVE NUCLEOSYNTHESIS AT STRONG MAGNETIC FIELD Kondratyev V. Taras Shevchenko National University of Kyiv, Physics Department, vkondrat@i.ua Effect of strong magnetic field on synthesis of chemical elements is considered at condi-tions of nuclear statistical equilibrium. Possibility to employ produced radion uclides to probe the transient ultra-magnetized astrophysical plasma in supernovae and near to neutron stars is analyzed. For iron group nuclides the magnetic modification of nuclear structure shifts a maximum of nucleosynthesis products towards smaller mass numbers approaching titanium. Signals of 44Ti radioactive deca y in the gammaspectra of the supernova remnant Cassiopeia A are revealed from the Integral IBIS/ISGRI observational data. The determined gamma-ray fluxes for 44Sc* lines with energies 67.9 keV and 78.4 keV correspond to initial 44Ti volume (3.3+0.9-0.7).10-4 solar masses that corroborates magnetic enhancement of isotope production at a field constrained on conditions of supernova explosion.

.., .. . . .. , , , , (low/hard high/soft). , 30-40 . , .. , .

HIP 13962, , , PSRJ0826+2637 ..1, ..2, ..3, ..1, ..1 1 , , , , 143-747, 3 Main Astronomical Observatory of NAS of Ukraine, Kyiv, Ukraine

2

IP 13962 (spectraltypeG0Ia), , PSRJ0826+2637 (The Origin of the Young Pulsar PSR J0826+2637 and Its Possible Former Companion HIP 13962, N.Tetzlaff, B.Dincel, R.Neuhaeuser, V.V.Kovtyukh, MNRAS, 2014). ,

28



1

.. 1, .. 2 « » . .. 2 . ..

, , . . « . ... . , . « » (https://bitbucket.org/leonidsat/simvso/get/currev.zip) -. , , , . . Python [1], , framework PyQt [2] guiqwt [3]. « » .
1. https://www.python.org/ 2. http://www.riverbankcomputing.com/software/pyqt/intro 3. https://code.google.com/p/guiqwt/

g , ( ) , . . , . DECH 20 . 17 NGC 6752, prg . EW WIDTH-9 .

: .. . .. . , , H, ( ) . "" H. , , ­ "" " . .

..1, ..1, ..2, ..1 , , 2 , , 143-747,

1

RG NGC 6752 .. . . .. , 17 NGC 6752. Teff g ­ . : Teff ubvy,

, (1998) 30 000 . .

29



1

..2, ..1, ..1 , , 2 , , 143-747,

Pup VLT IUE, 1.8 . 56 , Pup Am-Fm . B-F. 1949 . , 13.6 24.6 , . . ..1, ..2,3 , 2 . .. ,
1

. () , , , . , . [13], , , [7, 8]. , . , , , [4, 9].
1. Andrews S.M. & Willams J.P. // Astrophys. J., 2005. V. 631. P. 1134. 2. Carpenter J. at al. // Astrophys. J. Suppl. Ser., 2009. V. 181. P. 197. 3. Chiang E.I. & Goldreich P. // Astrophys. J., 1997. V. 490. P. 368. 4. Scholz A. et al. // Astrophys. J., 2007. V. 660. P. 1517. 5. Stamatellos D. & Whitworth, A.P. // Mon. Not. Roy. Astron. Soc., 2009. V. 392. P. 413. 6. Vorobyov E. I. & Basu S. // Astrophys. J., 2010. V. 719. P. 1896. 7. Zakhozhay O.V. // Radio Physics and Radio Astronomy, 2011. V. 2. 2. P. 125. 8. Zakhozhay O.V. // Radio Physics and Radio Astronomy, 2011. V. 2. 3. P. 211. 9. Zakhozhay V. A. et al. // Kinematics and Physics of Celestial Bodies, 2011. V. 27. 3. P. 140.

3

, . [3], , [5, 6]. , , - . , . .

30


« » ( ..)
..1, ..2 , 2 « »,
1

. "MULTI ­ COLUMN VIEWER" (MCV)
1

.. 1, .. 2 2

. . , , . , [1]. ( , ) ­ ­ «» [2] , , [3]. [4,5]. . OTJ 071126+440405 [6], .. . .. . , - 13,3 , , 136090. , , .
1. 2. 3. 4. Andronov I. L. // JPhSt, 2008.­V.12. N 2902. ­P. 1­11. Eggleton P.P. // AJ., 1983. ­ Vol. 268. ­ P. 368­369. Andronov I. L. // AAT, 1992.­V.2.­P. 341­345. ., // ., . 1971 ­ 246. 5. .. (.). // . , 1971 ­ 350. 6. Denisenko D., Korotkiy S. // vsnet-alert, 2009. ­ N 10870, http://ooruri.kusastro.kyoto-u.ac.jp/mailarchive/vsnet-alert/10870

MCV, 10 [1], . , Excel/Calc/Gnumeric . MCV (viewer) (. "DAT" ). , « » « », . ­ , , ( ) . . - ( ) , , . , . - «» , « » ­ , « » (. , ), , « ­ » .. http://uavso. pochta.ru/mcv. . .. 1, .. 2 , , , , ,
1

2

25 , , - ,

31


. , ( , ) . ­ (PCA) [1], , (). , PCA . xk=x0k+sxk+k, xk=x0k+zk, xak ­ ( k) , x0k ­ (., , ), s ­ , xk ­ , k ­ . : =0, =0, =0, =2, ==ss+2. < > , , , . m ­ , (m+1)m/2 = (1m), 2m s, ( ). m=3, (6) , . «» xk zk w=s/2. TT Ari .
1. Andronov I. L., Shakhovskoj N.M., Kolesnikov S.V.//2003, "White Dwarfs", p.325 ( 2003whdw.conf..325A )

( ). . , , , . (), ­ .
1. .. // . , 1991. 2. Andronov I. L. //Astronomical and Astrophysical Transactions, vol. 2, Issue 4, pp.341-345. 3. .. .// : , 2006. ­56.

ON THE VARIABILITY OF THE INTERMEDIATE POLAR V2306 CYG Breus V. 1, Petrik K. 2, Zola S. 3, Baransky A. 4, Hegedus T. 5 1 Odessa National Maritime University, 2 Hlohovec Astronomical Observatory, Hlohovec, Slovakia, 3 Astronomical observatory of the Jagiellonian university, Cracow, Poland 4 Astronomical Observatory of Taras Shevshenko National University, Kiev, Ukraine 5 Baja Astronomical Observatory, Baja, Hungary The pulsating X-ray source 1WGAJ1958.2+3232 was discovered by Israel et al. [1]. Zharikov et al. [2] obtained spectroscopy and photometry from which they determined an orbital period of 4h36m and confirmed the pulsation period of 733 s. Later on, Norton et al. reported [3] that the orbital period was 5.387 h, corresponding to the ­1 day alias of the period found by Zharikov [2]. Just after it, Zharikov et al. [4] re-analyzed this system using own photometric and spectroscopic data along with the data by A. Norton and confirmed their previously found orbital period of 4h 35m. The star was named as V2306 Cyg in 2003. We conducted our own international photometric monitoring of this object in 2009-2014. Additionally, we analyzed all 14 CCD time series from the AAVSO data archive. Periodogram analysis shows di fferent peaks, including the orbital period and it's aliases. Using the O-C analysis of the orbital minima (0.22446 Norton) we found a few cycles per year miscount, which gave us the linear trend on the O-C. So, we can conclude that the correct orbital period may be 0.2232685(24) days or 0.181545(3) days, which are daily aliases of each other and are close to [3] and [4]. Also we found the 2.01832­day period. It's worth to note that the phase curve in V has much larger amplitude than in R filter, so this variability ma y be interpreted as possibl e precession of the accretion disk in this system. This fact should be additionally studied.
1. Israel G. L. et al. //MNRAS, Volume 298, Issue 2, pp. 502506. (1998) 2. Zharikov S. V. et al. //Astronomy and Astrophysics, v.366, p.834-839 (2001) 3 Norton A. J. et al. //Astronomy and Astrophysics, v.384, p.195-205 (2002) 4 Zharikov S. V. et al. //Astronomy and Astrophysics, v.390, p.L23-L26 (2002)

.. , , ( ), . , [1-3]. Pascal ABC, , . , - -, . , , . , , , .

32


V859 CYG .. 1, .. 1, .. 2, .. 2 1 . .. . .. , 2 , V859 Cyg. . [1]. -702 (D=702 , F=2806 ,) 2006, 2007, 2009 2014 , V, CCD SBIG ST-7 ( 58, 0,67 ). , . -. . 1=7200 2=6900, R1=0.55 R2=0.38 , 0.35, 64°. , , EW.
1. Panko E.A., Sergienko O.G.//"Observational program for binary s ystems with period variations", in: 12th Young Scientist Conference on Astronomy and Space Physics, Abstracts, 2005, Kiev, P.82

" " . ( ). , ~1.5-2 , , "" , . , , , . , . , (EA), (.. EB EW). , , , .
1. .. // «», 2012. . 55 4. . 593.

" ". GSC 03543-00836 ­ EW .. " " , ­ . , , , . « », . , , 200 . , .. EW [1]. VSX AAVSO GSC 0354300836. 19h25m43.39s+46o26'52.6", 0.3055361d. V 13.60 ­ 14.65 m. B-V= 0.74.
1. http://www.aavso.org/vsx/index.php?view=detail.top&oid=398970

.., .. « » ( ). « » , . , . , [1]. ,

33


« »
. .. 1, .. 2, 3, .. 4, .. 4, .. 1, .. 3, .. 1, .. 5, .. 3, .. 3, .. 2, .. 6, .. 1, .. 7, ..8, .. 3, Burwitz V. 9, Chochol D. 10, DubovskÙ P. 11, Godlowski W. 12, Han Ki-Young 13, Han Wonyong14, HegedÝs T. 15, HrÌc L. 10, Kim Chun-Hwey13, Kim Yonggi 13, Kim Young-Hee 13, Mason P.A. 16, Nelson R.H. 17, Oksanen A. 18, Park Ji-Won 13, PetrÌk K. 19, Reinsch K. 20, Shakhovskoy N.M. 4, Szczerba R. 21, Szpako M. 12, Tremko J. 10, Zola S. 22,23, Yoon Joh-Na 13
1 2

3 4 5 6 7 8 9 1 1 1 1 1 1 1 1

1 1 2 2 2 2

, , , , , . .., , , . .., , ­ «», , , , « », , Max ­ Planck Institute for Extraterrestial Physics, MÝnchen, Germany 0 Astronomical Institute of the Slovak Academy of Sciences, Stara Lesna, Slovakia 1 Vihorlat National Observatory, Humenn, Slovakia 2 Opole University, Opole, Poland 3 Chungbuk National University, Cheongju, Korea 4 Korea Astronomy Observatory and Space Science Institute, Daejeon, Korea 5 Astronomical Observatory and Planetarium, Baja, Hungary 6 New Mexico National University, New Mexico, USA 7 Nelson R.H. Guest investigator, Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada 8 Hankasalmi Observatory, JyvÄskylÄ, Finland 9 Astronomical Observatory and Planetarium, Hlohovec, Slovakia 0 Georg­August University, GÆttingen, Germany 1 Nicolaus Copernicus Astronomical Center, Toru, Poland 2 Jagiellonian University, KrakÑw, Poland 3 Pedagogical University, KrakÑw, Poland

. « » ("InterLongitude Astronomy", ILA). 1900 . : "Polar" ­ ( AM Her), ( BY Cam V1432 Aql), ( DQ Her) ( DO Dra) , , , FL Cet OT J0711=CSS 081231:071126+ 440405; "Superhumper" ­ (TT Ari, MV Lyr) (V368 Peg .) , , «» (BH Lyn, DW UMa, PX And, EM Cyg, HS0728); "Eclipser" ­ , , , ( O'Connell) V361 Lyr , ; "Stellar Bell" ­ ­ ( RV, SR, M) (RR, DSct) ; "Symbiosis" ­ ­ ; "New Variable" ­ , , , Hipparcos ­ Tycho, Catalina, ASAS. , . , (­, ­, ­) , (­) , , , ­ (), ­ . B- 60 . . 1, .. 1, .. 1, .. 1, ..1, . .2, .. 1, .. 1 1 , " ",

2

, , .

B 60 . -

34


­ 8 , ­ 102. Microtek ScanMaker 9800XL TMA, ­ 1200 dpi, 3030 1300013000 px. 1 263 932 B 16.5m 1984.76±0.50 . TYCHO2, B- . ±0.26" ±0.17m ( B = 8m -13m ±0.13" ±0.11m) . TYCHO2 ±0.06" ( 93 925 ), B- ­ ±0.16m ( 4 458 ). UCAC4 ±0.34" ( 1 099 005 ). : .. 1, .. 2, .. 1 1 2 . , , . , 40- "Goward Grabb", 400- 117- "Unar". , , . . , .

COMPARATIVE ANALYSIS OF PROPER MOTIONS OF STARS IN OPEN CLUSTERS BY USING VO TOOLS Alexander Mazhaev RI Nikolaev Astronomical Observatory Astrometric catalogues such as Tycho2, Mobitel1, CSOCA, Dias, XPM, PM2000, SDSS-DR9 were used for cross identification of stars, visualization of proper motions and further data processing by using available VO Tools: TopCat and Aladin. The coefficients of linear correlation for common stars as well as the standard deviations for differences of proper motions were determined for at least ten pairs of catalogues to compare the accidental errors and the systematic biases between the given data sets. h ..1, ..1, ..1, ..1, ..2, ..3 1 , , 2 , 3 " ", Epson Expression 10000XL . (1935 .) (1976 .) h . B- TYCHO2. 6924 B 17m UCAC4 ±0.16" ±0.006"/ .
1

: .., .. , .. .., . . , . SIMBAD, ­ ALADIN. .

..1, ..2, ..3 " ", 2 , 3 . ,

.

35


LINUX/MIDAS/ROMAFOT. FITS 2000020000 . , , (TYCHO-2 .), .. FORTRAN PASCAL LINUX WINDOWS. ..1, ..2, ..3, ..3, ..3, Eglitis I.4, Eglite M.4, ..1, ..2, ..5 " ", 2 , 3 , , 4 Institute of Astronomy, University of Latvia, Latvia 5 . ,

1200 dpi. . : . .. " . .. ", (). . : (Java), , ( JSF, Hibernate, Spring), (PostgresSQL), . , , . . .. () 2007 () [1]. , , () [2], [3]. , .
1. . . // , 2007. . 103. 1. . 142. 2. .., .., .. // , 2010. . 16. 5. . 62. 3. Vavilova et al. // Kinematics and Physics of Celestial Bodies, 2012. V. 28. . 2. . 85.

1

( ) ( ) . , 1200 dpi Epson. . ±0.02-0.06 px ±0.01-0.02 mag . 600 2400 DPI .. , .. , .. , ..2 " ", 2 ,
1 1 1

SCIENTIFIC USE OF JOINT DIGITAL ARCHIVE Vavilova I.B. 1, Pakuliak L.K. 1, Golovnya V.V.1, Andruk V.M.1, Shatokhina S.V.1, Yizhakevych O.M.1, Kazantseva L.2, Lukianchuk V.V.3 1 Main Astronomical Observatory, National Academy of Sciences of Ukraine, Kyiv, Ukraine, 2 Astronomical Observatory, Kyiv Shevchenko National University, Ukraine, 3 Kyiv Shevchenko National University, Ukraine We will review some papers based on old digitized plates from several Observatories. In the framework of UkrVO national project the new methods of plate digital image processing are developed. The core of the UkrVO

1

Epson Perfection V750 Pro . , -

36


is the Joint Digital Archive (JDA). JDA includes observational archives of five Ukrainian observatories covered the period of around 100 years (http://gua.db.ukrvo.org/archivespecial.php) [1-3]. The photographic material of the JDA is used for the solution of classic astrometric problem ­ positional and photometric determinations of objects registered on the plates [4,5]. The results of digitizing are used in the next research directions: - search of optical analogs of GRB and creation of catalogs of objects in the areas around GRBs; - creation of astrometric catalogs of coordinates of Pluto and outer faint satellites of Jupiter and Saturn; - elaboration of proper methods of treatment and obtaining of astrometric coordinates for "moving" objects ­ asteroids, comets ­ by digitized images. Basic soft ware is a LINUX-MIDAS-ROMAFOT [6,7]. The results of tested methods show that the positional rms errors are better than ±150 mas for both coordinates and photometric ones are better than ±0.20m with the Tycho-2 catalogue as reference.
1. L.K. Pakuliak http://194.44.35.19/vo-mao/DB/ 2. Vavilova I.B., Pakuliak L.K. et al // Kinemat. and Phys. of Selest. Bodies 2012 28, N2, p.85-102. 3. I.B. Vavilova, L.K. Pakuliak, Yu.I. Protsyuk et al: 2012, Baltic Astronomy, 21, 356-365 4. Pakuliak L.K., Izhakevich E.M. et al: Pr. of the Conf. NAROO- GAIA, June 20- 22, 2012, France, Paris, 2012 5. Golovnya V., Andruk V.: Odessa Astronomical Publications, 2013, vol. 26/2, p.226 6. Golovnya V., Andruk V., Yatsenko A., 2010, Journal of Physical Studies, 14, N2, 2902 7. .., .. ., . , 2013, N220, c.517-521

(S1-S8) (J6-J8) DBGPA ..1, ..1, ..1, ..1, ..2 1 , 2 . , 70- ( , ) -

. 40­ , : (DLFA, D=400 , F=5500) ­ 170 , - (DWA, D = 400 , F = 2200 ) ­ 200 , () 600 (Z600, D = 600 , F = 7500 ) ­ 80 . ­ (S1-S9) (J6-J8). 50 S2-S8 19 J6-J7, 280 17 . Microtek ScanMaker 9800XL TMA (MSM) Epson Expression 10000XL. , LINUX-MIDASROMAFOT. Tycho2 0.14-0.16 arcsec. IMCCE.Paris (www.imcce.fr/sat) online , 0.5 arcsec. RMS 0.1-0.3". .

37



RTL-SDR .., .., .. , , - . , . -4 , RTL-SDR . RTL-SDR , R820T - RTL2832u Realtek. USB-2.0 , . 24 - 1766 MHz. 250 3,2 . 8 . , 1 ­ 40 . 4- RTL-SDR 4- -4. (3144, 3274, 3405 3461) . . BLLAC ..1, ..2, ..2, . 1 «-4» , 2 ... 3 ()
3

8.7 ­ 4 ) (~ 3­ 1 ). « » ( - ) , , -. , . «-SSA», , , ( , , - -). VLBI , «Moja ve ( 15.4 ). -. .. 1, .. 1,2,3, .. 1,2, .. 4, .. 4, .. 1, . 1,3, .. 1,3, .. 2,3 1 , , 2 « », , 3 , , 4 , , , . , . , , - . , . Zabbix. -

26- , . - «» BL Lac 14.5, 8 4.8 . - BL Lac (~

38


, Zabbix , snmp . Zabbix web-. , . , ­ . , web-, , ip- . , .
1

- . DDC-SDR : , , . DDC (Digital Down Conversion) , , , , SDR (Software-defined radio) , - , . , DDC-SDR . . TRACKING OF RADIO BURST SOURCES IN SOLAR CORONA BY HELIOGRAPHIC MEANS Koval A.A. 1, Stanislavsky A.A. 1,2, Konovalenko A.A. 1 Institute of Radio Astronomy of NAS of Ukraine 2 V.N. Karazin Kharkiv National University
1

..1,2, ..3 2 « » 3 «-»

. , , , , . DDC-SDR .., .., .. , , , . , , . , , , . , -

We present the report about heliographic measurements of solar radio bursts in the low-frequency range (16.5-33 MHz) using the UTR-2 radio heliograph [1]. The observations were carried out in April of 2013. The decameter radio emission originates at heights about 1-2 solar radii above photosphere. In this case the angular dimensions of solar burst sources are about one solar radius and even more. To estimate angular sizes of solar radio sources, there are two ways: interferometer measurements and radio telescope scanning. The two-dimensional heliograph of UTR-2 involved in our observations is capable to perform a fast scanning of a sky region and to create two-dimensional frames. The device allows us to observe not only the quiet-sun corona image [2], but to analyze two-dimensional spatial structures of burst sources changing in frequency and time. Knowing frequencies of frame records, we can find how solar burst sources evolve in corona height (reconstructing a threedimensional picture of the phenomenon). On the heliograms the direction of the source motion in upper corona for type III and IIIb-III bursts is clearly distinguished. In the issue our preliminary results of the heliographic study are discussed.
1. Stanislavsky A. A., Koval A.A., Konovalenko A. A., Abranin E.P. // arXiv:1112.1044. 2. Stanislavsky A. A., Koval A.A., Konovalenko A.A. // Astronomische Nachrichten, 2013. V.334. 10. 1086.

THE DAILY 110 MHZ SURVEY (BSA FIAN) IN THE ON-LINE MODE: DATABASE AND PROCESSING METHODS Samodurov V.A., Kitaeva M.A., Logvinenko S.V., Isaev E.A., Dumskij D.V., Pugachev V.D. PRAO ASC LPI From 2012 on radio telescope BSA FIAN multibeam diagram was started. It capable at July 2014 daily observing

39


by 96 beams in declination -8 .. 42 degrees in the frequency band 109-111.5 MHz. The number of frequency bands are from 6 to 32, the time constant are from 0.1 to 0.0125 sec. In receiving mode with 32 band (plus one common band) with a time constant of 12.5 ms (80 times per second) respectively produced 33x96x80 four byte reals and so daily we produced 87.5 Gbt (yearly to 32 Tbt). Thus continuous daily survey for most of the observed part of the sky is not yet over none observatories worldwide. Observations are carried out around daily for more than two years, in a day is usually written from 2.3 Gbt (6 bands and a time constant of 0.1 seconds) and per year ­ 0.8 Tbt data. Already an experimental database up to the 20th of October 2013 for the period of more than 20 parameters are calculated for each beam for every 5 seconds (more than 8 million time points), built almost one million images. These data are enormous opportunities for both short and long-term monitoring of various classes of radio sources (including radiotranzients) to monitor space weather, the Earth's ionosphere, search for different classes of radio sources, etc. By the end of 2014 will be finished work on the base data in on-line. From the database can be produce different ways of processing the observations, including by remote observers. .. , . . . . -2 [1] , 25 30 . , . - -2, , -, -. , , 10'. [2]. , , . -2 -

250 , . , .
1. . . . . 2011, . 16, 2, . 135-143. 2. . . . . 2012, . 17, 3, c. 207­217.

THE STUDY OF DISPERSION MEASURE FLUCTUATIONS OF ANOMALOUS INTENSIVE PULSES OF THE PSR J0953+0755 Skoryk A.O. Institute of Radio Astronomy of NAS of Ukraine Krasnoznamennaya str. 4, Kharkov 61002, Ukraine skoryk.a@rian.kharkov.ua While studying a set of anomalous intensive pulses (AIP) of the PSR J0953+0755 which has relatively short period which is equal to 0.253 s. It was found that the dispersion measure (DM) varies from pulse to pulse. In short sets of AIP that contain about 10 pulses the mean value and RMS of DM variation were obtained. MD fluctuations at such small time scales can be caused by rapidly varying fluctuations of the electron density in a pulsar magnetosphere or pulsar wind. Plasma irregularities in ISM, IPM and the earth ionosphere moves sufficiently slowly that they do not contribute to the DM variation, or this contribution is greatly weakened. By studying the rapid changes of DM it is possible to evaluate transverse dimension and characteristic velocities of inhomogeneities in the plasma near a pulsar. 081 .. «-4» 081 ­ BL Lac, . 1999-2011 , (UMRAO) 14.5, 8, 4.8 . wavelet- , . ~2.6 . ~1.2 ~ 2006.5-2010.2 . , , wavelet-, wavelet-

40


. ~0.8, ~0.6, ~0.4 (1.5 ). , 2009.3 (4.8 ), 2002.3; 2009.2 (8 ), 2004.3; 2008.0 (14.5 ). . wavelet ( VLBI Mojave, 15.4 ). -HII ORI BAR 8 .. 1, .. 2, .. 1 , 2 , , .
2

erated in the four components of anomalously intense pulse of the PSR J0953+0755. The different values of dispersion measure correspond to the pair of odd and even components. Both pairs of components have an elliptical polarization. This may be due to the fact that these components are the normal modes of electromagnetic waves propagating in the pulsar magnetosphere. Registered difference in the values of dispersion measure gives reason to believe that the pulsar magnetosphere was the first to resolve in depth by this parameter. Directly from the observations the estimate of the differential charge density in the pulsar magnetosphere obtained. It was made the numerical evaluation of the time constant and the scattering of the electron density fluctuations in the direction of PSR J0953 +0755. Discovered in decameter the fine structure in the radio emission of the pulsar J0953 +0755, in our opinion, can be explained by the propagation effects on the line of sight in the pulsar magnetosphere. : , ,
1

22 () 8 () (), (, ) 4- Orion Bar, . ( ) ­ HII Ori Bar. HII , Orion Bar HII , ­ HII . 1.23.1 â105 -3 (L) 0.006-0.04 Orion Bar. (1 Ori) 210- 230 140150 ( 5). (Vlsr) HII Vlsr 10-17 /, HII 8200-8400 6600-7000 . , , , (). , 1 Ori 35000- 37500 . DETECTION OF FINE STRUCTURE IN THE DECAMETER RADIOEMISSION PSR J0953+0755 Ulyanov O.M., Skoryk A.., Shevtsova A.I., Plahov M.S., Ulyanova O.O. Institute of Radio Astronomy of NAS of Ukraine Krasnoznamennaya str. 4, Kharkov 61002, Ukraine oulyanov@rian.kharkov.ua; skoryk.a@rian.kharkov.ua; ashevtsova@rian.kharkov.ua In the decameter wavelength range of 18-30 MHz a fine structure of the PSR J0953+0755 (B0950+08) radio emission was detect ed. The characteristic time of the fine structure existence is 1 millisecond. This structure is gen-

2

.1, . 2 , , . , 8, 79005 , , . , 5, 79060 ,

80- ­ (PLHR) (1-15) , 50 (60) . , «» (2004-2010 .), «-1» (2005 .), «-» ( 2012 .) 350-500 . PLHR , , . PLHR ( 2, N2; ~ 1015 ; ~ 1012 ). PLHR , , () . PLHR , , , . , -

41


PLHR , . PLHR, . , ­ , . .., .. , , . , 8, , 79005, [1] ( ) (7000-8200) . , , , , ., . , , . () , ( ­ [2], ­ [3]), , . , , n=3. , [4], [1] - , . , , , , , .

, , , . - , . ( 16400 ), .
1. S.J.Smith, D.S.Burch, Phys. Rev. 116, 5 (1959). 2. S.Geltman, Phys. Rev. 136, 935 (1962). 3. .., .., 17, 4902(1)-4902(18) (2013). 4. WJ.Karzas, R.Latter, Ap. JS. 6, 167 (1961).

THE FLARE ACTIVITY OF THE BLAZAR AO 0235+164 A.E.Volvach 1, M.G.Larionov 2, L.N.Volvach1, A.C.Gupta 6, A.Lahteenmaki 3, M.Tornikoski 3, M.F.Aller 4, H.D.Aller 4, M.Sasada 5, A.Agarwal 6 1 Radio Astronomy Laboratory of Crimean Astrophysical Observatory, Yalta, Ukraine 2 Space Science Center of P.N. Lebedev Physics Institute, Russian Academy of Science, Moscow, Russia 3 Metshovi Radio Observatory, Aalto University, Finland 4 Astronomy Department, University of Michigan, Ann Arbor, MI, USA 5 Kyoto University, Kyoto, 606-8502, Japan 6 Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital ­ 263129, India Context. We present the results of multi-frequency long-term monitoring of the active galactic nucleus (AGN) 0235+164 from radio to gamma-ray wavelengths. Aims. We derive parameters of the orbital and precession motion of a BSMBH model, masses of the central BH and its companion, and time delays bet ween flaring events at different wavelengths. Methods. Using time series analysis, we have found that the data show two harmonical periods of ~2 and 8 years, which can be interpreted as the orbital and precession period, respectivel y, of a binary super-massive black hole system (BSMBH). The periods are similar to those reported for other AGN thought to be tight BSMBH systems in a state of merging. A cross-correlation analysis of the evolution of flares at different frequencies allows us to determine delays between flares at different frequencies. We confirm the empirical relation of a delay of flux density with frequency found for other AGN, which is consistent with an inverse logarithmic dependence. Results. The dependence supports an intrinsic character of the variability of AGN at centimeter and shorter wavelengths that corresponds to the idea of the jet activit y in AGN being connected with a "blob" of relativistic plasma propagating down the jet and becoming optically thin successivel y at longer wavelengths. According to statistical data, the small number of bright AGN with r espect to the general population of massive elliptical galaxies is consistent with the emission of such objects.

42


,
.. « » . .. astrodozor@rambler.ru . , . , , , . , , , . , . .. « » . .. astrodozor@rambler.ru . , , . , , , .., . . : ? .. « » . .. astrodozor@rambler.ru , , 24 . , . 6-10 3-6 -. , SDO. . 10-20 , . - , . , , . SETI: .. , , , . , ( ) , . , .: , ? , , (« »). . , , , , - () , . -- -- , . 24 .. « »


YORP- .., .. . .. , ­'­­ (YORP-) . , , . YORP- . , YORP- , , , [1]. YOPR- . , . YORP-, [2, 3], . , . YORP-. , [4]. YORP- [5].
1. Bottke W. F., Vokrouhicky D., Rubincam D. P., Nevorny D. // AREPS, 2006. V. 34, p. 157. 2. Golubov A.A., Krugly Y.N. // Protecting the Earth against Collisions with Asteroids and Comet Nuclei, St. Petersburg, 2010, p. 90. 3. Steinberg E., Sari R. // AJ, 2011. V. 141, p. 55. 4. Golubov O., Krugly Yu.N. // ApJL, 2012. V. 752, p. 11. 5. Golubov O., Scheeres D.J., Krugly Y.N. // ApJ, accepted

typical shape, magnitude, duration of decrease, delay, and size of galactic cosmic rays modulation area. We found that the radius of the modulation area is different for the two types of decreases by absolute magnitude and changes with duration of the cycle of solar activity. It was shown that radius of effective modulation zone of the cosmic rays increases from minimum to maximum of solar activity for the Forbush effects associated with flares (or CMEs) and behaves oppositely for decreases caused by high-speed flows from coronal holes (anticorrelation with Wolf numbers). Correlations with various indices of solar and geomagnetic activity were investigated for decreases of both types. .. 2, .. 1, .. 2,3, .. 3 1 ..., 2 ... 3 «-4» . : 23- (2005-2008 ), 24- (2009-2013 .). , , (), . . . . . AJISAI ., ., ., ., ., ., ., ., . « » . .. nikkoshkin@onu.edu.ua (Ajisai) 1986 1500 50 . 2.15 318 120 -. 14 .

DECREASES OF THE GALACTIC COSMIC RAYS INTENSITY INFLUENCED BY TWO TYPES OF THE SOLAR WIND HIGH-SPEED STREAMS Klyuyeva A.I. Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine Based on statistical analysis from 1995 to 2013 years, it was shown that recurrent high-speed streams of the solar wind, generated by coronal holes, modulate of the galactic cosmic rays flux near the Earth. A comparative analysis have been done for two types of decreases galactic cosmic rays intensity from coronal holes and solar flares (or CME) by the main parameters such as the


, . "" . , - , , . 40 . , . 2013 2.24 . , , 0Â4°. , , . . ­ . , . , . .., .. , , . , , . , , , . , , . , . . , , , . 24- . -

DIAS (European Digital Upper Atmosphere Server) 2012 2013 . F1, F2 Es. . GPS .., .. -4 , . , , . () , . , , (). IGS (international GNSS Service) . . , . , , , , - . . GPS-, . . .. 1, .. 1, .. 1, .. 2, .. 1 1 - . .. , , 2 , , - , , , -


, , . 16-32 1-10 0-1 2011 ­ 2014 . - . .. (. , .) -3 , . - ­ , . , , 0,3 . " - " 2012 ­ 2016 . 24TH CYCLE OF SOLAR ACTIVITY IN THE MAXIMUM: COMING TRUE AND NO-COMING TRUE PROGNOSES V.G.Lozitsky, V.M.Efimenko Taras Shevchenko National University of Kyiv, Astronomical Observatory lozitsky@observ.univ.kiev.ua, lozitsky_v@ukr.net Development of solar activity in 24th cycle has specific peculiarity ­ non-monotonous increasing of solar activity on grown phase which occurs for 1/3 number of all cycles. The modification of Waldmayer's method was applied for forecasting 24th cycle which bases on a connection between maximum sunspot number and speed of increasing of activity on grown phase of cycle. If we compare 24th cycle with previous similar cycles Nos. 1, 5, 6, 9, 12, 15 s 16), one can conclude that this cycle will be weak, with maximum sunspot number Wmax (24) = 73 10 in 2014­2015, most likely ­ in first half of 2014. Current cycle could be considered as anomalous because on different times of grown phase it gives manifestations of both weak and middle cycle. SMALL-SCALE MAGNETIC FIELD DIAGNOSTICS IN SOLAR FLARES USING FEI 5233 AND FEI 5383 LINES V.G.Lozitsky, Oleg V. Lozitsky Taras Shevchenko National University of Kyiv, Astronomical Observatory lozitsky@observ.univ.kiev.ua, lozitsky_v@ukr.net

FeI 5233 and 5383 lines have low Lande factors (1.26 and 1.12, respectively) and relatively large spectral width (about 0.3 ). On this account, even in a case of very strong fields (3-4 kG) they must show the simple picture of the Zeeman splitting, with parallel to each other the bisectors of profiles I+V and I ­ V. In actual fact, another picture was found in 12 flares: bisectors of these lines have maximums of splitting on certain distances from line center, what must not be in the homogeneous magnetic field. In particular, both lines have one maximum of splitting on distance 80110 mA, and the second ­ on distance 170-200 mA. If these peculiarities present the Zeeman effect manifestations from strong spatially unresolved magnetic fields, the corresponding strengths are following: about 6 and 12 kG. We plan to discuss reliability of this conclusion. 22 1958 . . 1, .. 2, .. 3 1 . . .. 3 .

2

, 22 1958 . , 5 [1]. Epson Expression 10000XL 1200dpi . , . . , . . , . : , , . , [2]. . . . N2, . . [3]. . , , , -


, ­ . . . , 9-10 1965 , , 21 1958.
1. .. : . ­ .: , 1994. ­ 208 . 2. Borovicka J., Weber M., Bocek J. Temporal evolution of a Perseid fireball spectrum // WGN, the Journal of the IMO, 2006. ­ P. 49-54. 3. Borovicka J. Two components in meteor spectra // Planet. Space Sci. ­ 1994. ­ Vol.42, . 2. ­ P. 145-150.

- «» «» .., .., .., .., .., .. . , «-4» «» «» 2008-2010 . . . 12, 8 6 , . , «» . , a_pakhomow@mail.ru . , , , , , (Homo Sapiens) . , , , , , -

. , . 400 , , , , 400 , . : ( , ) , . , . , , . , . . , , , . . , , . .. 1, .. 1, .. 1, .. 2, .. 1, .. 1, .. 2, .. 1 . .. , 2 . .. , ,

1

145 () () 23- . 83 ( 16,19±0,18) 62 ­ (- 17,25±0,21, p<0,05). , . , (2,27±0,16 1,75±0,12 , p<0,05), 5-7 , .


, 3- , ­ (p<0,05). , (p<0,05) . , , . .. 1, .. 2, .. 1, .. 1, .. 1, .. 1, .. 2, .. 1 1 . .. , 2 . .. , , ( ) () ( - 16,19±0,18) ( - 17,25±0,21, p<0,05) (). , ( 7,1 ) . () (); () ­ . , , ( ) - . . . . , , ­ . " " , , rereclon@gmail.com , , -

. , . , . . . , , , . [1] . , . , . , . , .
1. Pavlenko D. Determination of the satellite's rotation using its light curve // Odessa astron. publ., 2013, v.26, part 1, p. 95-98.

11- .. 1, .. 1, .. 1, .. 2, .. 3, .. 3, .. 3, .. 4, .. 5 1 . . . , 2 . .. , 3 . .. , 4 (), 5 - e- 2009 - 2011 . . . , «». -


-, - . - . , 11 - , , . -800 ..1, ..1, ..1, ..2 1 « » . .. , , 2 « », , 800 [1], , [2]. . , [3], , c Minor Planet Center [4] . Minor Planet Center. , -800, , , [5]. 15 [6] . , , .
1. S.M.Andrievsky, I.E.Molotov, N.N.Fashchevsky, S.V.Podlesnyak, V.V.Zhukov, V.V.Kouprianov, S.G.Kashuba, V.I.Kashuba, V.F.Mel'nichenko, Yu.M.Gorbanev //A NEW 800 mm AUTOMATIC TELESCOPE, OAP vol. 26/1, 2013. 2. .., .. // 1994 CC 2001 SN263, , 16- « », 2014. 3. http://www.johnstonsarchive.net/astro/asteroidmoons.html. 4. http://www.minorplanetcenter.net/iau/MPEph/MPEph.html 5. . // , , , 1970. 6. .., .. // 15, 17, 19, 21 // . ­ 2009. ­ .6, 2. ­ .155-157.

«-2» ..1, ..2, .. 3 1 , . 2 ... , . 3 - , ., vit@immsp.kiev.ua 2014 « ». : ( ) ( 23-24 ). - «» (http://geliomed.immsp.kiev.ua) «-2». , «» 2006- [1]. 2006 2010 - 1- , [3]. , ( ..), ( . .), ( ..) ( ..), . , «». - «-2» ccharom yces cerevisiae. , , , « -» [3]. Saccharomyces cerevisiae . , , . 14-02-90424__ 36-02-14.


1. .., .., .. // . ­ 2007. ­ 4. ­ .55-62. 2. .., .., .. // . ­ 2003. ­ N 3. ­ . 3-11. 3. .., ., . // : VIII ,, ", , , , 28 . ­ 3 ., 2009. ­ . 70.

Catalina Sky Survey. .., . ., .., . . (), , () -4, , , . . . . , , «» . . () (), , 2011 . , . , -4. , , .

.., .., .., .., .. 2008 . () . . . - time delay and integration (, - ). -50 (D=0.5 , F=3.0 ) . - Apogee Alta U9000 (3kâ3k), 0.7°â0.7°. 2008-2014 .. -50 219 , 62 . 4000 , (­) ±1. (4 ), 140 (12 ), 45° (3 ). 50 , - GAIA Follow Up Network for Solar Syst em Objects.

« »
( , )
1

..1, .. 2 « », , 2 , . ..,

.

() . , , «» . , , , « XXI ». : www.moa.edu.pl.