Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.astronomy.com/news/2015/08/first-use-of-iss-astronaut-pictures-for-light-pollution-studies
Äàòà èçìåíåíèÿ: Unknown
Äàòà èíäåêñèðîâàíèÿ: Sun Apr 10 09:36:36 2016
Êîäèðîâêà: ISO8859-5
First use of ISS astronaut pictures for light pollution studies | Astronomy.com
Tonight's Sky
Sun
ò??
ò??
Sun
Moon
ò??
ò??
Moon
ò??
ò??
Mercury
ò??
ò??
Mercury
ò??
Venus
ò??
ò??
Venus
ò??
Mars
ò??
ò??
Mars
ò??
Jupiter
ò??
ò??
Jupiter
ò??
Saturn
ò??
ò??
Saturn
ò??

Tonight's Sky ò?? Change location

OR

Searching...

Tonight's Sky ò?? Select location

Tonight's Sky ò?? Enter coordinates

ÒÀ '
ÒÀ '

First use of ISS astronaut pictures for light pollution studies

This study not only includes the well-known signatures of cities and streets, but also the effects of faint indirectly scattered light.
RELATED TOPICS: SPACE FLIGHT | ISS | LIGHT POLLUTION
Light pollution in Milan
Milan seen from the ISS in 2015.
NASA/ESA
Scientists are tapping into photographs taken by astronauts aboard the International Space Station (ISS) to reliably measure the amount of light pollution worldwide. This study not only includes the well-known signatures of cities and streets, but also the effects of faint indirectly scattered light, which up to now had not been measured quantitatively. The new results confirm that this diffuse glow, which is seen from space, is scattered light from streetlights and buildings. This is the component responsible for the brightening of the night skies in and around cities, which drastically limits the visibility of faint stars and the Milky Way. The team also concludes that European countries and cities with a higher public debt also have higher energy consumption for street lighting per inhabitant and that the total cost of the energy consumption for street lights is 6,300 million euros/year in the European Union.

In a remarkable new study, scientists from the Universidad Complutense de Madrid, Spain and the Cégep de Sherbrooke in Canada, together with members of the public, have worked on a project called Cities at Night. The aim is to produce a global color map of the Earth at night from pictures taken by astronauts on the International Space Station using a standard digital camera.

Starting in July 2014, this huge project required the cataloging of over 130,000 images — the ISS’s entire high-resolution archive — and geo-referencing them to place them on a map. The images were also calibrated using the stars in the background sky over the ISS, as well as ground-based measurements of the night sky brightness.

Previously, light pollution measurements had to be done in situ and would contribute only a single measurement to the light pollution map. This new method, connecting space-based measurements of light pollution with ground-based night sky brightness measurements, makes it possible for the first time to map light pollution reliably over extended areas.

A diffuse light present around cities, in addition to the familiar bright lights from streets and factories, was previously detected by the Defense Meteorological Satellite Program, but its nature remained unknown; the satellite’s low-resolution cameras could not distinguish it from other instrumental factors. However, the high-resolution images captured by the astronauts — in addition to an extensive sky brightness survey conducted around Madrid — have now allowed scientists to observe the direct relationship between the diffuse light observed and light pollution from artificial lights.

Using the ISS astronaut images, as well as data from the Defense Meteorological Satellite Program and the Suomi National Polar-orbiting Partnership Satellite, the researchers also discovered that European countries and cities that have a higher public debt also have a higher energy consumption of street lighting per inhabitant. The total cost of the energy consumption for streetlights is estimated by the study to be 6,300 million euros per year in the European Union. The different ways of calculating streetlight energy costs across Europe previously made such an estimate impossible.

This citizen-science project is vital for researchers from many scientific fields. Studying lighting technology from orbit is currently of even greater importance now than before due to massive transitions to LED technology. The ISS is the only place from which it is possible to estimate the prevalence of the different types of lighting technologies used in cities around the world and to measure the impact of light pollution on the environment and human health.

“Until the advent of new satellites, astronaut photography was our only color and high-resolution window on the Earth,” said lead scientist Alejandro Sánchez de Miguel.

After gaining the initial support of multiple institutions and thousands of volunteers, the next phase of the Cities at Night project aims to gather funding to keep the project running so it can extend its color map of the night side of Earth.
0

JOIN THE DISCUSSION

Read and share your comments on this article
Comment on this article
Want to leave a comment?
Only registered members of Astronomy.com are allowed to comment on this article. Registration is FREE and only takes a couple minutes.

Login or Register now.
0 comments
ADVERTISEMENT

FREE EMAIL NEWSLETTER

Receive news, sky-event information, observing tips, and more from Astronomy's weekly email newsletter.

ADVERTISEMENT
ADVERTISEMENT
asy_gravitational_eguide

Click here to receive a FREE e-Guide exclusively from Astronomy magazine.

Find us on Facebook