Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.astronet.ru/db/forums/1291241/tree/text
Дата изменения: Unknown
Дата индексирования: Mon Apr 11 04:24:31 2016
Кодировка: Windows-1251

Поисковые слова: магнитогидродинамические волны
Астронет > Форумы > Обсуждение публикаций Астронета > Re: Аннотации основных статей журнала "Земля и Вселенная" 3, 2013
Rambler's Top100Astronet    
  по текстам   по форуму  внутри темы
 

args[0]=message
args[1]=DB::DB::Message=HASH(0x48f2e10)
Re: Аннотации основных статей журнала "Земля и Вселенная" 3, 2013
28.07.2013 10:01 | А.П. Васи

Структура

Внутреннее строение Солнца

Строение Солнца. В центре Солнца находится солнечное ядро. Фотосфера это видимая поверхность Солнца, которая и является основным источником излучения. Солнце окружает солнечная корона, которая имеет очень высокую температуру, однако она крайне разрежена, поэтому видима невооруженным глазом только во время полного солнечного затмения.

Солнечное ядро

Центральная часть Солнца с радиусом примерно 150175 тыс. км (то есть 2025% от радиуса Солнца), в которой идут термоядерные реакции, называется солнечным ядром[32]. Плотность вещества в ядре составляет примерно 150 000 кг/м³[33] (в 150 раз выше плотности воды и в ~6,6 раз выше плотности самого плотного металла на Земле осмия), а температура в центре ядра более 14 млн К. Анализ данных, проведенный миссией SOHO, показал, что в ядре скорость вращения Солнца вокруг своей оси значительно выше, чем на поверхности[32][20]. В ядре осуществляется протон-протонная термоядерная реакция, в результате которой из четырех протонов образуется гелий-4[34]. При этом каждую секунду в излучение превращаются 4,26млн тонн вещества, однако эта величина ничтожна по сравнению с массой Солнца 21027 тонн. Мощность, выделяемая различными зонами ядра, зависит от их расстояния до центра Солнца. В самом центре она достигает, согласно теоретическим оценкам, 276,5 Вт/м³[35]. Таким образом, на объем человека (0,05 м³) приходится выделение тепла 285 Ккал/день (1192 кДж/день), что на порядок меньше удельного тепловыделения живого бодрствующего человека. Удельное же тепловыделение всего объема Солнца еще на два порядка меньше. Благодаря столь скромному удельному энерговыделению запасов топлива (водорода) хватает на несколько миллиардов лет поддержания термоядерной реакции.

Ядро единственное место на Солнце, в котором энергия и тепло получается от термоядерной реакции, остальная часть звезды нагрета этой энергией. Вся энергия ядра последовательно проходит сквозь слои, вплоть до фотосферы, с которой излучается в виде солнечного света и кинетической энергии[36][37].

Зона лучистого переноса

Над ядром, на расстояниях примерно от 0,20,25 до 0,7 радиуса Солнца от его центра, находится зона лучистого переноса. В этой зоне перенос энергии происходит главным образом с помощью излучения и поглощения фотонов. При этом направление каждого конкретного фотона, излученного слоем плазмы, никак не зависит от того, какие фотоны плазмой поглощались, поэтому он может как проникнуть в следующий слой плазмы в лучистой зоне, так и переместиться назад, в нижние слои. Из-за этого промежуток времени, за который многократно переизлученный фотон (изначально возникший в ядре) достигает конвективной зоны, может измеряться миллионами лет. В среднем этот срок составляет для Солнца 170 тыс. лет[38].

Перепад температур в данной зоне составляет от 2 млн К на поверхности до 7 млн К в глубине[39]. При этом в данной зоне отсутствуют макроскопические конвекционные движения, что говорит о том, что адиабатический градиент температуры в ней больше, чем градиент лучевого равновесия[40]. Для сравнения, в красных карликах давление не может препятствовать перемешиванию вещества и зона конвекции начинается сразу от ядра. Плотность вещества в данной зоне колеблется от 0,2 (на поверхности) до 20 (в глубине) плотностей воды[39].

Конвективная зона Солнца

Ближе к поверхности Солнца температуры и плотности вещества уже недостаточно для полного переноса энергии путем переизлучения. Возникает вихревое перемешивание плазмы, и перенос энергии к поверхности (фотосфере) совершается преимущественно движениями самого вещества. С одной стороны, вещество фотосферы, охлаждаясь на поверхности, погружается вглубь конвективной зоны. С другой стороны, вещество в нижней части получает излучение из зоны лучевого переноса и поднимается наверх, причем оба процесса идут со значительной скоростью. Такой способ передачи энергии называется конвекцией, а подповерхностный слой Солнца толщиной примерно 200 000км, где она происходит, конвективной зоной. По мере приближения к поверхности температура падает в среднем до 5800 К, а плотность газа до менее 1/1000 плотности земного воздуха[39].

По современным данным, ее роль в физике солнечных процессов исключительно велика, так как именно в ней зарождаются разнообразные движения солнечного вещества. Термики в конвекционной зоне вызывают на поверхности гранулы (которые по сути являются вершинами термиков) и супергрануляцию. Скорость потоков составляет в среднем 12км/с, а максимальные ее значения достигают 6км/с. Время жизни гранулы составляет 1015 минут, что сопоставимо по времени с периодом, за который газ может однократно обойти вокруг гранулы. Следовательно, термики в конвекционной зоне находятся в условиях, резко отличных от условий, способствующих возникновению ячеек Бенара[41]. Также движения в этой зоне вызывают эффект магнитного динамо и, соответственно, порождают магнитное поле, имеющее сложную структуру[39].

Атмосфера Солнца

Изображение поверхности и короны Солнца, полученное Солнечным оптическим телескопом (SOT) на борту спутника Hinode. Получено 12 января 2007 года.

Фотосфера

Фотосфера (слой, излучающий свет) образует видимую поверхность Солнца. Ее толщина соответствует оптической толщине приблизительно в 2/3 единиц[42]. В абсолютных величинах фотосфера достигает толщины, по разным оценкам, от 100[43] до 400 км[1]. Из фотосферы исходит основная часть оптического (видимого) излучения Солнца, излучение же из более глубоких слоев до нее уже не доходит. Температура по мере приближения к внешнему краю фотосферы уменьшается с 6600 К до 4400 К[1]. Эффективная температура фотосферы в целом составляет 5778 К[1]. Она может быть рассчитана по закону Стефана Больцмана, согласно которому мощность излучения абсолютно черного тела прямо пропорциональна четвертой степени температуры тела. Водород при таких условиях сохраняется почти полностью в нейтральном состоянии. Фотосфера образует видимую поверхность Солнца, по которой определяются размеры Солнца, расстояние от Солнца ит.д. Так как газ в фотосфере является относительно разреженным, то скорость его вращения много меньше скорости вращения твердых тел[43]. При этом газ в экваториальной и полярных областях, движется неравномерно на экваторе он делает оборот за 24 дня, на полюсах за 30 дней[43].

Хромосфера

Хромосфера (от др.-греч. χρομα цвет, σφαίρα шар, сфера) внешняя оболочка Солнца толщиной около 2000 км, окружающая фотосферу[44]. Происхождение названия этой части солнечной атмосферы связано с ее красноватым цветом, вызванным тем, что в видимом спектре хромосферы доминирует красная H-альфа линия излучения водорода из серии Бальмера. Верхняя граница хромосферы не имеет выраженной гладкой поверхности, из нее постоянно происходят горячие выбросы, называемые спикулами. Число спикул, наблюдаемых одновременно, составляет в среднем 6070 тыс.[45] Из-за этого в конце XIX века итальянский астроном Секки, наблюдая хромосферу в телескоп, сравнил ее с горящими прериями. Температура хромосферы увеличивается с высотой от 4000 до 20 000 К (область температур больше 10 000 К относительно невелика)[44].

Плотность хромосферы невелика, поэтому яркость недостаточна для наблюдения в обычных условиях. Но при полном солнечном затмении, когда Луна закрывает яркую фотосферу, расположенная над ней хромосфера становится видимой и светится красным цветом. Ее можно также наблюдать в любое время с помощью специальных узкополосных оптических фильтров. Кроме уже упомянутой линии H-альфа с длиной волны 656,3 нм, фильтр также может быть настроен на линии Ca II K (393,4 нм) и Ca II H (396,8 нм). Основные хромосферные структуры, которые видны в этих линиях[46]:

Корона

Солнечная корона во время солнечного затмения 1999 года.
Снимок Солнца 9 апреля 2013 года. Иллюстрация NASA/SDO.

Корона последняя внешняя оболочка Солнца. Корона в основном состоит из протуберанцев и энергетических извержений, исходящих и извергающихся на несколько сотен тысяч и даже более миллиона километров в пространство, образуя солнечный ветер. Средняя корональная температура составляет от 1 000 000 до 2 000 000 К, а максимальная, в отдельных участках, от 8 000 000 до 20 000 000 К[47]. Несмотря на такую высокую температуру, она видна невооруженным глазом только во время полного солнечного затмения, так как плотность вещества в короне мала, а потому невелика и ее яркость. Необычайно интенсивный нагрев этого слоя вызван, по-видимому, эффектом магнитного пересоединения[47][48] и воздействием ударных волн (см. Проблема нагрева короны). Форма короны меняется в зависимости от фазы цикла солнечной активности: в периоды максимальной активности она имеет округлую форму, а в минимуме вытянута вдоль солнечного экватора. Поскольку температура короны очень велика, она интенсивно излучает в ультрафиолетовом и рентгеновском диапазонах. Эти излучения не проходят сквозь земную атмосферу, но в последнее время появилась возможность изучать их с помощью космических аппаратов. Излучение в разных областях короны происходит неравномерно. Существуют горячие активные и спокойные области, а также корональные дыры с относительно невысокой температурой в 600 000 К, из которых в пространство выходят магнитные силовые линии. Такая (открытая) магнитная конфигурация позволяет частицам беспрепятственно покидать Солнце, поэтому солнечный ветер испускается в основном из корональных дыр.

Видимый спектр солнечной короны состоит из трех различных составляющих, названных L, K и F компонентами (или, соответственно, L-корона, K-корона и F-корона; еще одно название L-компоненты E-корона[49]. K-компонента непрерывный спектр короны. На его фоне до высоты 910′ от видимого края Солнца видна эмиссионная L-компонента. Начиная с высоты около 3′ (угловой диаметр Солнца около 30′) и выше виден фраунгоферов спектр, такой же как и спектр фотосферы. Он составляет F-компоненту солнечной короны. На высоте 20′ F-компонента доминирует в спектре короны. Высота 910′ принимается за границу, отделяющую внутреннюю корону от внешней. Излучение Солнца с длиной волны менее 20 нм, полностью исходит из короны[49]. Это означает, что, например, на распространенных снимках Солнца на длинах волн 17,1 нм (171 Å), 19,3 нм (193 Å), 19,5 нм (195 Å), видна исключительно солнечная корона с ее элементами, а хромосфера и фотосфера не видны. Две корональные дыры, почти всегда существующие у северного и южного полюсов Солнца, а также другие, временно появляющиеся на его видимой поверхности, практически совсем не испускают рентгеновское излучение.



[Цитировать][Ответить][Новое сообщение]
Форумы >> Обсуждение публикаций Астронета
Список  /  Дерево
Заголовки  /  Аннотации  /  Текст

Астронет | Научная сеть | ГАИШ МГУ | Поиск по МГУ | О проекте | Авторам

Комментарии, вопросы? Пишите: info@astronet.ru или сюда

Rambler's Top100 Яндекс цитирования