Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://vo.astronet.ru/arxiv/?get_articles=1&author=S.
Äàòà èçìåíåíèÿ: Unknown
Äàòà èíäåêñèðîâàíèÿ: Wed Apr 13 08:21:37 2016
Êîäèðîâêà: ISO8859-5
Full-text search for arXiv > astro-ph

sort results by

Use logical operators AND, OR, NOT and round brackets to construct complex queries. Whitespace-separated words are treated as ANDed.

Show articles per page in mode

S.

Normalized to: S..

3 article(s) in total. 239 co-authors, from 1 to 2 common article(s). Median position in authors list is 4,0.

[1]  oai:arXiv.org:1601.04461  [pdf] - 1342138
Detailed spectral and morphological analysis of the shell type SNR RCW 86
Collaboration, H. E. S. S.; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; AngÓÌner, E. O.; Backes, M.; Balzer, A.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; BernlÓÆhr, K.; Birsin, E.; Blackwell, R.; BÓÆttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chretien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Atai, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J. -P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; FÓÆrster, A.; FÓÌÓ?ling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M. -H.; GrudziÕ?ska, M.; Hadasch, D.; HÓ?ffner, S.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzynski, K.; Katz, U.; Kerszberg, D.; Khelifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluzniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; KrÓÌger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lefranc, V.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Lohse, T.; Lopatin, A.; Lorentz, M.; Lu, C. -C.; Lui, R.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Moraa, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Oakes, L.; Odaka, H.; S.; Ó?ttl; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Petrucci, P. -O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; PÓÌhlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; Reyes, R. de los; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; SchÓÌssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J. -P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Valerius, K.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; VÓÆlk, H. J.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Weidinger, M.; White, R.; Wierzcholska, A.; Willmann, P.; WÓÆrnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharia, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Zywucka, N.
Comments: accepted for publication by A&A
Submitted: 2016-01-18
Aims: We aim for an understanding of the morphological and spectral properties of the supernova remnant RCW~86 and for insights into the production mechanism leading to the RCW~86 very high-energy gamma-ray emission. Methods: We analyzed High Energy Spectroscopic System data that had increased sensitivity compared to the observations presented in the RCW~86 H.E.S.S. discovery publication. Studies of the morphological correlation between the 0.5-1~keV X-ray band, the 2-5~keV X-ray band, radio, and gamma-ray emissions have been performed as well as broadband modeling of the spectral energy distribution with two different emission models. Results:We present the first conclusive evidence that the TeV gamma-ray emission region is shell-like based on our morphological studies. The comparison with 2-5~keV X-ray data reveals a correlation with the 0.4-50~TeV gamma-ray emission.The spectrum of RCW~86 is best described by a power law with an exponential cutoff at $E_{cut}=(3.5\pm 1.2_{stat})$ TeV and a spectral index of $\Gamma$~$1.6\pm 0.2$. A static leptonic one-zone model adequately describes the measured spectral energy distribution of RCW~86, with the resultant total kinetic energy of the electrons above 1 GeV being equivalent to $\sim$0.1\% of the initial kinetic energy of a Type I a supernova explosion. When using a hadronic model, a magnetic field of $B$~100$\mu$G is needed to represent the measured data. Although this is comparable to formerly published estimates, a standard E$^{-2}$ spectrum for the proton distribution cannot describe the gamma-ray data. Instead, a spectral index of $\Gamma_p$~1.7 would be required, which implies that ~$7\times 10^{49}/n_{cm^{-3}}$erg has been transferred into high-energy protons with the effective density $n_{cm^{-3}}=n/ 1$ cm^-3. This is about 10\% of the kinetic energy of a typical Type Ia supernova under the assumption of a density of 1~cm^-3.
[2]  oai:arXiv.org:1011.5583  [pdf] - 269370
Mt. Graham: Optical turbulence vertical distribution at standard and high vertical resolution
Comments: 12 pages, 6 figures, Proc. SPIE Conference "Ground-based and Airborne Telescopes III", 27 June 2010, San Diego, California, USA
Submitted: 2010-11-25
A characterization of the optical turbulence vertical distribution and all the main integrated astroclimatic parameters derived from the CN2 and the wind speed profiles above Mt. Graham is presented. The statistic includes measurements related to 43 nights done with a Generalized Scidar (GS) used in standard configuration with a vertical resolution of ~1 km on the whole 20-22 km and with the new technique (HVR-GS) in the first kilometer. The latter achieves a resolution of ~ 20-30 m in this region of the atmosphere. Measurements done in different periods of the year permit us to provide a seasonal variation analysis of the CN2. A discretized distribution of the typical CN2 profiles useful for the Ground Layer Adaptive Optics (GLAO) simulations is provided and a specific analysis for the LBT Laser Guide Star system ARGOS case is done including the calculation of the 'gray zones' for J, H and K bands. Mt. Graham confirms to be an excellent site with median values of the seeing without dome contribution equal to 0.72", the isoplanatic angle equal to 2.5" and the wavefront coherence time equal to 4.8 msec. We provide a cumulative distribution of the percentage of turbulence developed below H* where H* is included in the (0,1 km) range. We find that 50% of the whole turbulence develops in the first 80 m from the ground. The turbulence decreasing rate is very similar to what has been observed above Mauna Kea.
[3]  oai:arXiv.org:1011.5592  [pdf] - 394310
Optical turbulence: site selection above the internal Antarctic plateau with a mesoscale model
Comments: 12 pages, 2 figures, Proc. SPIE Conference "Ground-based and Airborne Telescopes III", 27 June 2010, San Diego, California, USA
Submitted: 2010-11-25
Atmospherical mesoscale models can offer unique potentialities to characterize and discriminate potential astronomical sites. Our team has recently completely validated the Meso-Nh model above Dome C (Lascaux et al. 2009, 2010). Using all the measurements of CN2 profiles (15 nights) performed so far at Dome C during the winter time (Trinquet et al. 2008) we proved that the model can reconstruct, on rich statistical samples, reliable values of all the three most important parameters characterizing the turbulence features of an antarctic site: the surface layer thickness, the seeing in the free atmosphere and in the surface layer. Using the same Meso-Nh model configuration validated above Dome C, an extended study is now on-going for other sites above the antarctic plateau, more precisely South Pole and Dome A. In this contribution we present the most important results obtained in the model validation process and the results obtained in the comparison between different astronomical sites above the internal plateau. The Meso-Nh model confirms its ability in discriminating between different optical turbulence behaviors, and there is evidence that the three sites have different characteristics regarding the seeing and the surface layer thickness. We highlight that this study provides the first homogeneous estimate, done with comparable statistics, of the optical turbulence developed in the whole 20-22 km above the ground at Dome C, South Pole and Dome A.