Документ взят из кэша поисковой машины. Адрес оригинального документа : http://resurs.cpi.space.ru/files/Space_activity_at_the_beginning_of_XXI-st_Century_rus.doc
Дата изменения: Thu Aug 16 15:51:21 2012
Дата индексирования: Mon Oct 1 19:44:44 2012
Кодировка: koi8-r

Поисковые слова: запрещенные спектральные линии


Космическая деятельность в начале 21 века


(взгляд изнутри)


Г.М. Чернявский

НТЦ «Космонит», Российская корпорация ракетно-космического приборостроения
и информационных систем

1. Системный подход в космонавтике
Всех, кто связал свою жизнь с космонавтикой, и тех, кого интересуют
будущее среды обитания и расширения ее до космических масштабов, волнует
сегодняшнее состояние и развитие космической деятельности в Мире и на
Родине первого искусственного спутника Земли и первого космонавта.
Обрисовать эту картину, даже в эскизном исполнении, далеко не тривиальная
задача. Существенным является ракурс ее рассмотрения и оценки.
Запуск первого ИСЗ явился скачком интеллектуализации коллективного
человеческого разума - основной силы, способной предотвратить деструкцию
Земной цивилизации
Сегодня космонавтика проникла в материальную и в духовную сторону
Человеческой жизни.
«Две вещи наполняют душу всегда новым и, и все более сильным удивлением и
благоговением, чем чаще мы размышляем о них - это звездное небо надо мной и
моральный закон во мне» /И. Кант./
С древних времен тайны космической среды привлекали Землян. В 30-е гг.
прошлого века появилось, благодаря научным исследованиям, понимание путей
проникновения в космос.
Родоначальником теории космического полета с использованием принципов
реактивного движения был К.Э. Циолковский, гениальность которого состоит в
системном подходе к проблеме. Он не только определил средства для
космических полетов, но и сформулировал цели этих полетов
Прошедшие 50 лет космической эры показали, что осуществление идей К.Э.
Циолковского о распространении земных форм жизни во Вселенной дело
отдаленного будущего. Вместе с тем, целевая функция была определена
правильно. По этой траектории развивается космическая деятельность.
Обсуждая сегодняшние проблемы космонавтики, надо помнить, что космическая
деятельность представляет сверхсложную проблему, которая требует огромных
интеллектуальных и материальных ресурсов, концентрации усилий в различных
областях жизнедеятельности в масштабах, не соизмеримых с Земными.
Сложность проблемы обуславливает системный подход, принципы которого в
космонавтике были заложены трудами К.Э. Циолковского и при создании
первого ИСЗ.
Методологически специфика системного подхода состоит в том, что он
ориентирует при познании объектов и явлений на их целостность и
интегративные свойства в пространстве, во времени и в окружающей среде. СП
является выражением особого измерения действительности - системности.
Углубленное понимание свойств материального и духовного мира обуславливает
прогрессирующую дифференциацию отраслей знания. Одновременно,
проникновение в частное, в плоть до микро (нано-) мира выдвигает, на
первый план системное (целостное) видение проблемы, понимание детерминант
ее целей и организации.
«Я считаю, что познать части без знания целого также невозможно, как
познать целое без знания его частей» (Блез Паскаль).
Системный подход способствует пониманию сущности и позволяет исключить
многие ошибки в космической деятельности.
Системный подход совместно с методологий компьютерного моделирования
предоставляет исключительное средство формирования адекватной информации о
сложных объектах.
50-летний стаж практической космонавтики свидетельствует о продуктивности
экспликации космической деятельности некоторой системой действий,
направленных на создание и использование по целевому назначению
некоторого класса сложных техногенных систем космического базирования. В
принятой терминологии - «космическая система» (КС).
КС представляет упорядоченное по отношениям множество связанных между собой
технических средств /компонент/ космического, а также земного базирования.
Интегративные свойства и функции этого множества направлены на достижение
целей, связанных с освоением космического пространства.
Особенность этого класса систем состоит в том, что основная часть КС -
космические аппараты (искусственные спутники Земли, автоматические
межпланетные станции, роверы, космические корабли), а также средства их
транспортировки функционирует в нетривиальных условиях космического
пространства. КА занимают верхнюю страту в иерархии КС и являются
призмой ее описания.
Основным компонентом на Земле, формирующим систему, являются комплексы
технических средств пользователей КС. Средства земного базирования
обеспечивают, также: управление космическими аппаратами (КА) в полете,
подготовку и обеспечение старта транспортных средств.
Сегодня космическая деятельность охватывает на базе системного подхода всю
совокупность действий, направленных на создание, правовую защиту и
использование по целевому назначению КС, включая постановку целей,
формирование облика и разработку системы, разработку и производство
подсистем и компонентов, эксплуатацию, а также анализ и синтез систем.

Все основные реализованные за 50-лет космические проекты представляют
сложные системы со всеми их атрибутами. Это системы: запуска первого ИСЗ,
первый полет Человека в космос, полеты Человека и АМС на Луну, межпланетные
перелеты АМС. Сюда же относятся многочисленные КС, предназначенные для
утилизации космического пространства.
Гарантировать сложную систему от деструкции на всем «жизненном цикле»
призваны ее атрибуты. К ним относятся: целостность (эмерджентность),
целенаправленность, приемлемость, преемственность, динамизм,
совместимость, автономность.
Наличие цели является имманентным свойством любой сложной системы.
КС относится к разряду целесообразных систем, для которых цели формулирует
создающая их система высшего уровня. В данном случае в качестве таковой,
как правило, выступают социально-экономические конгломераты.
«Более важным, чем знать, как делать, являются знания «что делать» (Н.
Винер). Чем точнее сформулированы и определены цели, тем легче выбирать
средства их достижения.
При мотивации целей космической деятельности существенную роль играют
выработанные веками за счет природного и антропогенного окружения присущие
Землянам внутренние механизмы. А именно: созидательность, амбиции,
соперничество, любознательность (стремление к знаниям), склонность к
изменению места пребывания и перемещениям (путешествиям),
«Исследования космоса должно захватывать воображение». ( Карл Саган).

Вместе с тем, имманентные Человеку черты мешают объединению социума в
глобальном масштабе для освоения космического пространства. Поэтому
космическая деятельность осуществляется на уровне государства и имеет
конкурентный оттенок.
Определяющим в космической деятельности является получение государством
выгоды в военной, научной и социальной сфере. Сегодня амбиции космической
деятельности играют решающую роль в ментальности той или иной страны.
Вместе с тем, прагматизм космической деятельности требует значительных
инвестиций. Поэтому масштабные проекты реализуются в рамках международного
сотрудничества.
Успешными примерами такого сотрудничества могут служить: Российско-
Американский проект МКС, американо-европейское сотрудничество в области
космических исследований и ДЗЗ, заимствование Китаем технических решений
передовых стран.
Однако, монетарный подход в России привел к тому, что международное
сотрудничество сводится к участию на рынке космических услуг. При этом за
рубежом, как правило, приобретаются не разработки и технологии, а готовая
продукция в виде приборов и агрегатов для космической техники
Следствием этого, очевидно, могут служить несостоявшиеся в свое время
Российско-Европейские проекты, создание на базе ГЛОНАСС совместной
спутниковой навигационной системы и совместная разработка многоразового
транспортного КК.
За пятьдесят лет в мировой практике оформились две магистрали космической
деятельности с особенностями целей и средств их достижения.
Форпостом освоения космоса являются научные исследования, цель которых
состоит в получении знаний о космосе и Земле, как его составной части.
Научные исследования опосредовано влияют на социально-экономическое
развитие.
Результаты космических исследований стимулируют утилизацию космического
пространства, целю которой является использование свойств космоса
непосредственно для Земных нужд. При утилизации космоса на передний план
выдвигаются целевые задачи глобальной информатизации, которая предполагает
повышение степени информированности общества за счет новых информационных
технологий и перспективных средств, в том числе, космического базирования.
Особое место в космической деятельности занимает непосредственное
пребывание Человека в космосе. Полет в космос первого советского
космонавта явился эпохальным событием и послужил началом этого процесса.
Пилотируемые полеты в космос стали и продолжают оставаться ориентиром в
оценке успехов космической деятельности. Эти полеты имеют большое
общественно - политическим значение. С их помощью могут решаться в
определенном объеме задачи изучения свойств космоса и, возможно, его
утилизации.
Ранжирование вклада той или иной страны в мировую космическую деятельность
представляет многокритериальную задачу. Один из упрощенных вариантов ее
решения состоит в качественной оценке по ряду показателей, исключив весовой
коэффициент каждого из них Такими показателе могут быть выбраны научные и
технологические результаты по основным направлениям исследований и
утилизации космос, по пилотируемым программам, а также по техническим
средствам освоения космоса

2. Технические средства освоения космоса
Взаимосвязь системных атрибутов «целенаправленность» и «приемлемость», где
первый играет ведущую роль, является определяющей для сложной технической
системы. Для КС атрибут «приемлемость» в значительной степени
детерминирован возможностями технических средств, обеспечивающими
транспортирование, а также непосредственное или опосредованное пребывание
Человека в космосе.

За 50 лет космической эры сформировались два типа технических средств,
отличающихся целевым назначением:

- космические аппараты (КА), которые обеспечивают в космосе решение
целевых задач КС; сюда относятся искусственные спутники Земли,
межпланетные станций, роверы, космические корабли;
- транспортные средства (ракеты-носители, разгонные и посадочные модули,
транспортные корабли), обеспечивающие доставку грузов на трассах Земля-
космос, космос-Земля, космос-космос (Строго говоря, транспортные корабли
занимают промежуточное место.)
Одна из достопримечательностей первого ИСЗ состоит в том, он явился
источником создания новой промышленной отрасли - космического
аппаратостроения, функционирующей в системной увязке с ракетостроением.
Особенности этой отрасли состоят в разработке, изготовлении и эксплуатации
технических средств, способных длительно функционировать в нетривиальных
условиях космического пространства.


2.1. Космические аппараты
Советский Союз являлся родоначальником космической отрасли. Здесь были
созданы первые в мировой практике образцы всех типов КА:
КА занимает верхнюю страту в иерархии КС и является призмой ее описания. КА
выполняет системные функции, а именно:
- целевую функцию, которая для КС информационного назначения включает
получение, обработку и распространение информации;
- динамическую функцию, отражающую пространственно-временное состояние КА и
обеспечивающую оперативность, регулярность, длительность решения КТС
целевой задачи.
Принципиально важным для КС, используемых при утилизации космоса, является
решение целевой задачи в реальном или квазиреальном времени, что в
глобальном масштабе обеспечивается орбитальной группировкой с числом ИСЗ
(1.
Не одиночные миссии, а регулярное, постоянное пребывание группировок КА на
орбите - веление 21века. На 4-ой международной конференции по космосу,
проведенной в Израиле 28-29 января 2009г., было заявлено, что одним из
основных направлений космической деятельности является создание группировок
спутников для интегрированного зондирования Земных объектов и явлений в
различных диапазонах спектра.
КА наряду с системными функциями выполняет также набор сервисных
(внутренних) функций, обеспечивающих его функционирования в космосе. Для
чего КА оснащаются бортовыми энергетическими установками, системами
управления движением центра масс КА и вокруг центра масс, системами
«жизнеобеспечения».
Выбор облика КА представляет многокритериальную задачу, решаемую в
условиях соответствия его параметров атрибутам системы. Основным критерием
является максимизация ценности и объема генерируемой КА информации в
рамках целевой задачи КС при габаритно-массовых ограничениях со стороны
средств выведения, а также стоимости запуска и эксплуатации КА.
Облик КА определяется с учетом его роли при выполнении целевой и
динамической функций системы и формируется конструкцией космической
платформы и бортового целевого комплекса. Космическая платформа включает
бортовые сервисные системы и собственную конструкцию.
Опираясь на системный атрибут «преемственность», в целях повышения
надежности и снижения стоимости для ИСЗ в некоторых случаях АМС проводится
унификация космических платформ. Базой для унификации служат аналог
платформы из имеющегося технологического задела. Впервые на практике
унификация была проведена в 70-е гг. на основе конструктивно-компоновочной
схемы и бортовых сервисных систем отечественного КА навигации и связи
«Циклон».
Имеют место две тенденции при выборе массогабаритных характеристик КА,
определяемых его целевой и динамической функциями и технологическим уровнем
разработки, проявляющимся, в первую очередь прогрессом в радио- и
оптоэлектронике.
Первую тенденцию представляет увеличение со временем массогабаритных
размеров КА за счет расширения его целевых функций. Эта тенденция
характерна для ИСЗ на геостационарных и высоких орбитах, где оперативные
характеристики системы обеспечиваются ограниченным составом орбитальной
группировки
Так, масса ГИСЗ сегодня достигает 6,7 т. (IPStar, TerraStar) и будет
увеличена в ближайшее время, по прогнозам специалистов, на базе платформы
Alphabus до 8 т. При этом энергетические возможности КА составят 18 кВт,
ресурс - до 15лет. Масса модели КА GPS, запуск которой запланирован на 2013
г., составляет 2700 кг при массе эксплуатируемой сегодня модели 2000 кг.
Верхний предел массы КА регламентирован атрибутами системного подхода, в
нарушение которых, например, появились вначале 80-х гг. и бытуют до сих
пор предложения РКК «Энергия» о создании универсальных тяжелых космических
платформ.
Вторая тенденция характерна для спутников на средневысотных и низких
орбитах. Здесь, чтобы обеспечить оперативные характеристики КС, необходима
кластерная группировка КА, и в ключе стратегии сокращения расходов и
рисков стремятся к малоразмерным спутникам.
Первый в мировой практике низколетящий спутник для персональной связи
массой 60кг был создан в Советском Союзе в середине 60-х гг. прошлого
столетия. В настоящее время вновь начали появляться и КС на базе
малоразмерных ИСЗ. Создаются, в том числе в России, спутники массой от 100
до 500 кг. В 2009 г. введена в эксплуатацию группировка спутников ДЗЗ
Rapid Eye разработки британской компании SSTL и канадской MDA. Масса КА,
который оснащен мультиспектральной аппаратурой с разрешением 5 м.,
составляет 175 кг.
Ведутся, также, разработки микро-, нано- и пико - ИСЗ.
Пока основное назначение микро-, нано-, пико - спутников - проведение
научных и технологических экспериментов. Именно этим целям служит система,
составляющая 11,9% мирового рынка технических средств ДЗЗ, в основном,
продукции британской фирмы SSTL. Малоразмерные спутники приобретаются
также в политических целях развивающимися странами, которые мечтают
вступить в клуб космических держав.
Эффективность КА коррелированна не с его абсолютной, а с относительной
массой
(М п.н./М КА), которая составляет в мировой практике 0,4 - 0,45. В
архаичных отечественных конструкциях типа КА «Ресурс-ДК» и «Метеор-М» это
значение равно 0,3.
По данным организации «Euroconsult» всего за 1999-2008 гг было изготовлено
307 коммерческих КА. По прогнозам фирмы «Форкаст интернешнл», мировой рынок
производства спутников за период 2009-2013 гг. оценивается в 56,6 млрд.
долл. Будет изготовлено 469 КА. В том числе, ежегодная стоимость
глобального рынка КА массой до 200 кг в период до 2011 г. будет находиться
в пределах 225 млн. долл.
Количество поставляемых фирмами КА распределяется следующим образом:
"Thales Alenia Space" (43), «Чайниз экэдеми оф спейс текнолоджи (39), EADS
Astrium (34), «Спейс системз»/Лорал (25), «Юропиен сателлайт навигашн»
(19).
В 2008 г орбитальные группировки КА составляли: Китай -46, Япония - 46,
Россия - 51, Европа -115, США - 30. При этом в 2008 запущено 107 КА, из
них принадлежащих: США - 26, России - 20, КНР -12, Германии- 8. Как видно,
орбитальная группировка России по количеству КА уступает США в шесть раз, а
Европе - в 2,5 раза.
Технология космического аппаратостроения в России находится в состоянии
стагнации из-за нарастающего отставания со времен Советского Союза в
области радиоэлектроники. В 2007г Правительством принята весьма
важная, в том числе, для модернизации космического аппаратостроения, ФЦП
«Развитие электронной компонентной базы и радиоэлектроники до 2015г.»,
реализация которой требует значительных капиталовложений. Однако, сделанное
при принятии программы шапкозакидательское заявление министра
промышленности и энергетики РФ, о том, что с 2011г. планируется выйти «на
технологический паритет» и, что российская электроника будет на равных
конкурировать с зарубежными аналогами, дезавуирует оптимизм в этом вопросе.

Сегодня международная кооперация в части приобретения приборов и, главное,
в заимствовании информационных технологий является единственным выходом для
России из создавшейся ситуации. Первым шагом в этом направлении служит
соглашение о стратегическом сотрудничестве, заключенное в 2007г. между ОАО
ИСС им. Решетнева и фирмой "Thales Alenia Space".


2. 2. Ракеты - носители
Цели создания ракет-носителей на современном этапе космической
деятельности, для КС являются «промежуточными». Вместе с тем, транспортные
средства на рынке космических услуг выступают, одновременно, в качестве
конечного продукта, что усиливает их роль в космической деятельности.
По данным консалтинговой фирмы «Forecast International», активность на
мировом рынке космических запусков, снижавшаяся в течение предшествующих
лет, имеет тенденцию к повышению числа запусков, начиная с 2005г. (2004г. -
54, 2005г. - 55, 2006г. - 66, 2007г. - 67, 2008 г. -71). Наблюдается
всплеск запросов на запуски спутников на низкие орбиты со стороны ДЗЗ и
«персональной» связи.
Примечательно, что число запусков растет на фоне увеличения гарантийного
срока функционирования ИСЗ, что свидетельствует о повышении активности
космической деятельности в целом.
Россия лидирует по числу запусков КА. В 2008г. были проведены запуски, в
том числе отечественных КА, в количестве, соответственно : Россия 26 и 18;
США 15 и 14; Китай 10 и 10; Европа 6 и 2.
Такое соотношение в запусках отечественных и зарубежных КА свидетельствует,
что космическая деятельность США и Китая направлена на конечный
результат, в то время как в Европе и в России акцентируется внимание на
рынок запусков. Но если Европа при тесном взаимодействии с США весьма
активна по основным направлениям космической деятельности, то Россия
находится под угрозой превращения в «космического извозчика».
Россия в настоящее время обладает достаточным парком РН. Интенсивно
эксплуатируются РН легко класса «Космос-3М», «Рокот» и РН среднего
класса, включая модификации РН «Союз», РН «Днепр», РН «Протон» и «Протон-
М».
РН «Космос-3М» и «Рокот являются конверсионными. Производство РН «Космос-
3М» прекращено. Наличный боезапас БР 19, на базе которой разработана РН
«Рокот», ограничивает его пуски до 2015г. включительно.
РН «Союз-2» представляет модернизацию знаменитой БР 7А и активно
применяется для вывода КА. При этом РН совместно с разгонным блоком
«Фрегат» обеспечивает вывод КА на средние и высокие орбиты.
РН «Союз» безотказно используется в пилотируемой программе, и НАСА
подтверждает намерение использовать его для доставки астронавтов после
прекращения эксплуатации «Шатллов». Реализуется модернизация РН (проект
«Союз-ST»).
РН «Днепр» почти в чистом виде представляет собой РС-20 «Сатана». С 1998г.
с помощью этой РН проведено 13 запусков более 30 российских и иностранных
спутников. Сегодняшний запас этих РН составляет 150 шт.
Российская промышленность, как полагают руководители Роскосмоса, будет
загружена заказами по запускам с космодромов Байконур, Плесецк, Куру.
Однако, эти радужные планы имеют подводные камни. Обстановку на мировом
рынке космических запусков можно характеризовать как агрессивную со стороны
США, Европы, Индии и Китая.
Европа с 2010г. отказывается от использования российских конверсионных
ракет-носителей «Днепр» и «Рокот» в пользу собственного легкого РН
«Вега».
Проект пусков РН «Союз-ST» из Гвианского космического Центра
рассматривается экспертами в Европе как возможно временное решение до
начала эксплуатации собственной ракеты средней грузоподъемности. В Европе
обсуждается вопрос о модернизации РН Arian -5, которая в версии Arian -5
MЕ сможет доставлять на геостационарные полярные орбиты (ГПО) около 12т.
Индией к настоящему времени с использованием РН РSLV запущено 30 ИСЗ, из
них 16 - иностранных. Создается РН GLSV-MkIII.
В следующем десятилетии на рынок выходят носители нового поколения с
повышенной грузоподъемностью, такие, как EELV (США), HIIB (Япония),
«Великий поход-5» (Китай),
Характерной чертой мирового ракетостроения для рынка пусковых услуг
становится разработка конструкции по критерию «эффективность - стоимость».
Получают распространение стартовые твердотопливные ускорители и кислородно-
водородные верхние ступени, которые отсутствуют в России. Американцы,
китайцы, японцы идут по пути создания конструкций РН диаметром до 10м. (В
России ограничиваются размером 4,1м.)
Что касается перспективы ракетостроения в России, то она выглядит несколько
парадоксальной. В 1995г. было принято Постановление Правительства «О мерах
по созданию космического ракетного комплекса (КРК) «Ангара», которое было
определено, как столбовая дорога отечественных средств выведения. В 2008г
программы «Ангара» и «ГЛОНАСС» были поставлены В.В. Путиным во главу угла
Российской космической деятельности:
Семейство «Ангара» включает четыре типа РН (от легкого до тяжелого
классов). РН создаются на базе двух унифицированных ракетных модулей УРМ-1
и УРМ-2 с предполагаемой грузоподъемностью от 1,5 до 24, т. на низкой
околоземной орбите. Данная программа реализуется ГКНЦП им. Хруничева с
широкой кооперацией. В начале следующего десятилетия планируется начало
ЛИ легкого варианта РН
В качестве полигона для запуска РН был выбран самый северный космодром в
мире «Плесецк». Одновременно был закрыт расположенный на юго-востоке страны
космодром «Свободный». При этом декларировалась идея обеспечить свободный
доступ России в космос запусками РН «Ангара» всех типов российских КА со
своей территории. Однако, была упущена «небольшую» деталь. Географическое
расположение космодрома не позволяет производить запуски по существующей
трассе пилотируемых полетов с наклонением 51є. Что касается ГСО, то здесь
энергетические потери РН «Ангара-5» делают ее не конкурентно способной с РН
«Протон-М»
В процессе разработки проявились мнения экспертов, что модификации РН
легко («Ангара-1.1») и среднего типа («Ангара1.2») по своим тактико-
техническим характеристикам вряд ли найдут потребителей. В части РН «Ангара-
1.1» Минобороны России уже выразило свое отрицательное отношение.
Что касается «свободного» доступа России в космос, то к этому вопросу
вернулись в 2007г, и была принята ФЦП «Российские космодромы»,
предусматривающая строительство космодрома «Восточный»
В начале 2009г. Роскосмосом параллельно с продолжением работ по РН
«Ангара» был проведен конкурс, и началось эскизное проектирование нового
космического ракетного комплекса среднего класса повышенной
грузоподъемности нового поколения (шифр ОКР «Русь-М»). Первый старт новой
РН планируется в 2015 г.
В соответствии с тактико-техническим заданием (ТТЗ) КРК нового поколения
предназначен для решения задач в интересах федеральных ведомств России, в
первую очередь по программе исследования и освоения околоземного
космического пространства, а в последующем и небесных тел пилотируемыми
средствами, а также в интересах международного сотрудничества и
коммерческих заказчиков»
При сопоставимой грузоподъемности с РН «Ангара-5» (более 20 т.) КРК нового
поколения, по заявлениям авторов проекта, отличает:
- приоритет решению возложенных задач пилотируемыми средствами;
- использование планируемого к строительству космодрома Восточный, что
обеспечивает запуск по трассам пилотируемых полетов и на геостационарную
орбиту;
- технический облик, включающий тандемную схему запуска в отличие от
пакетной схемы на РН «Ангара» и кислородно-водородные двигатели;
- обеспечение жестких требований безопасности;
- перспектива создания РН грузоподъемностью 50 и 100 т.
В качестве примечания следует отметить, что грузоподъемность носителя
«Ares-1» составляет 26 т., а носителя «Ares-5», предназначенного для
полетов на Луну и Марс, - 180т.
В 2009 г. появилась информация, что ожидается госбюджетное финансирование
создания нового носителя легко класса «Союз-1» с запуском в 2011 г.,
который обеспечит вывод на низкие орбиты полезной нагрузки массой до 4,5
т.
Таким образом, круг замкнулся. В России создаются параллельно два ряда
ракет-носителей: семейство РН легкого, среднего, тяжелого класса «Ангара» и
РН легкого («Союз-1»), среднего (Союз-2»), тяжелого (среднего повышенной
грузоподъемности нового поколения) классов.
Кстати, в отличие от России, в США широко обсуждается выбор по критерию
«эффективность-стоимость» с принятием решения в 2009 г. о производстве
только одного из четырех типов тяжелой ракеты-носителя для пилотируемой
программы: «Ares», EELV, DIRECT, HLV.
Последствия Российской стратегии создания транспортных средств,
представляется, не заставят себя долго ждать.
В качестве послесловия можно привести заявление С.Б. Иванова:
«Перспективное семейство ракет «Ангара» - важнейший козырь в демонстрации
позиции ведущей космической державы, а дальнейшее затягивание строительства
старта грозит показать неэффективность государственного управления
крупнейшим проектом. Ракета в легком и тяжелом варианте должна стартовать в
2011 г.».

3. Космические исследования
Исследования космоса с использованием непосредственно расположенных в нем
технических средств являются локомотивом всей космической деятельности. По
мере приобретения в процессе научных исследований новых знаний о космосе
человечество расширяет социальную сферу. Очевидно, что недооценка значения
этих исследований загоняет в тупик всю деятельность по освоению космоса

Полеты первых спутников уже в 1958 г. дали новую информацию о физических
параметрах Земли и околоземном космическом пространстве.
Первые данные о Луне, Марсе, Венере были получены при полетах советских АМС
в 1959, 1961 и 1971 гг., соответственно. Затем начала поступать информация
с американских АМС.
Бум космических исследований совпал с 60-70 гг. прошлого столетия, когда
начался «штурм» Луны, Марса и Венеры. Только Советским Союзом было запущено
44 АМС к Луне, 18 - к Марсу, 28 - к Венере, хотя эффективность этих миссий
была весьма низкой. (Меньше 50% запусков были удачными.)
Очевидно, уровень космических исследований определяется не только числом
запусков, а, главное, объемом информации, полученной с научных КА,
прибывающих в космос.
2 марта 1972 г. в неизведанные глубины Вселенной отправился межзвездный
посланник человечества - американский КА «Пионер-10», который, находясь
сегодня в рабочем состоянии, покинул пределы Солнечной системы и движется в
направлении звезды Альдебаран созвездия Телец.
В последующие годы научные КА США, России, Европы побывали в различных
областях Солнечной системы.
В 80-е гг. Советским Союзом были запущены две АМС в сторону Венеры одна - к
Марсу. В 1996 г. был выведен на орбиту российский ИСЗ научного назначения
«Интербол-2».
В начале 21 века в мировой практике наблюдается значительное оживление в
освоении космического пространства. Выполняемый объем работ восхищает своей
грандиозностью. В космосе постоянно пребывают научные КА всех ведущих
кос