Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://lnfm1.sai.msu.ru/neb/rw/natsat/rep_carlics.htm
Äàòà èçìåíåíèÿ: Thu Sep 23 17:46:53 2010
Äàòà èíäåêñèðîâàíèÿ: Mon Oct 1 23:26:02 2012
Êîäèðîâêà:

Ïîèñêîâûå ñëîâà: èçó÷åíèå ëóíû
New Page 1

Физические свойства карликовых планет

Уральская В.С.

Государственный астрономический институт им. П.К.Штернберга

Доклад

 26-ая Ассамблея Международного астрономического союза, которая состоялась в Праге в 2006 г. приняла решение о введении нового класса небесных тел, а именно, карликовых планет. Сегодня мы не будем обсуждать вопрос о том, является ли этот вопрос решенным окончательно или он будет пересматриваться и уточняться, насколько он проработан, тем более он вызвал возражения многих астрономов по различным соображениям,  исторического, мировозренческого характера, по этичным соображениям и т.д. Но то, что этот вопрос назрел не вызывает сомнений.

Возмущения в движении Урана и Нептуна объясняли существованием планеты за орбитой Нептуна и поиском ее занимались многие астрономы. Поэтому открытый в 1930 г. Плутон был сразу причислен к планетам. Однако после определения массы и орбиты Плутона оказалось, что он не может быть планетой X, которую искал Лоуэлл и другие, из-за малой массы и орбиты. Астрономы видели, что Плутон не вписывался в общую картину образования Солнечной системы, согласно которой твердые и менее массивные планеты образовались ближе к Солнцу, а газовые гиганты сформировались из планетезималий в более далеких окрестностях Солнечной системы. Плутон движется не в плоскости движения всех классических планет, его орбита имеет значительный наклон к плоскости эклиптики

Плутон в своем движении вокруг Солнца иногда находится ближе к Солнцу, чем Нептун (например, с 1979 по 1999 г.), т.е. в проекции на плоскость эклиптики эти орбиты пересекаются, хотя в действительности этого не происходит из-за большого наклона орбиты Плутона к эклиптике.

Однако статус большой планеты за Плутоном был оставлен. В конце 20-го века ситуация существенно изменилась. Причины, приведшие к изменению статуса Плутона следующие:

1.     За орбитой Нептуна открыт второй пояс ледяных тел – Пояс Койпера, или так называемые транснептунные объекты

2.     Открыто множество объектов, движущихся на орбитах, подобных орбите Плутона, т.е. в резонансе 2:3 с Нептуном, но меньших размеров.

3.     Открыт объект, по размеру превышающий Плутон - Эрида

МАС организовал Рабочую группу Международного Астрономического Союза (IAU Working Group: "Definition of a Planet"), возглавляемая И.Уильямсом (Iwan Williams). В Интернете была организована полемика, которая позволяла в течение нескольких лет высказывать свои предложения и пожелания.

 Новые определения классических планет, карликовых планет и малых тел Солнечной системы приведены на слайде.

n     " Классическая планета " - это небесное тело, которое

(a)  обращается вокруг Солнца,

(b) имеет достаточную массу, для того, чтобы самогравитация превосходила твердотельные силы и тело могло принять гидростатически равновесную (близкую к сферической) форму и

(c)  очищает окрестности своей орбиты (т.е. рядом с планетой нет других сравнимых с ней тел)
                    Планеты земной группы – Меркурий, Венера, Земля, Марс

                 Газовые гиганты – Юпитер, Сатурн, Уран, Нептун

n     "Карликовая планета" – небесное тело, которое

(a) обращается вокруг Солнца,

(b) имеет достаточную массу, для того, чтобы самогравитация превосходила твердотельные силы и тело могло принять гидростатически равновесную (близкую к сферической) форму,

(c) не очищает окрестности своей орбиты и

(d) не является спутником (планеты).
                                    Карликовые планеты Церера, Плутон, Эрида

n     Все остальные объекты, обращающиеся вокруг Солнца, охватываются понятием "Малые тела Солнечной системы". Это астероиды, кометы, почти все транснептунные объекты, исключая спутники планет.

Мы рассмотрим другую сторону вопроса, насколько гармоничной будет представляться наша Солнечная система, являются ли общими физические свойства всех трех карликовых планет, чтобы их объединить в один класс и чем этот класс отличается от других объектов Солнечной системы.

1 янв.1801г. Пиацци (Piazzi) открыл Цереру, которая сразу была признана планетой, так как она удовлетворяла правилу Тициуса-Боде r=0.4+0.3×2n (а.е.), где n=0 – Венера, n=1 – Земля, n=2 – Марс, n=3 – Церера, n=4 Юпитер,... Через несколько лет оказалось, что таких объектов много и все они образуют тор, который был назван Главным астероидным поясом, а Церера – астероидом. В 2006 г. в третий раз был изменен статус Цереры и она была причислена к карликовым планетам. Как уже сказано, ее орбита находится между Марсом и Юпитером на среднем расстоянии a = 2.77 а.е. Эксцентриситет орбиты e = 0.08 приводит к тому, что расстояние изменяется от 2.5 до 3 а.е. Наклон орбиты составляет i = 10°.6, период обращения 4.6 лет. Интересная особенность орбиты состоит в том, что перигелии и афелии Цереры и Марса находятся на противоположных сторонах от Солнца. Такая особенность орбиты присутствует еще у некоторых больших астероидов Главного пояса.

О физических свойствах планеты еще мало что известно. Размер Цереры почти 1000 км, а именно, 975×909 км, т.е. она имеет почти сферическую форму, плотность 2.08 г/см3. Альбедо 0.13. Масса 9.5 ×1020кг  составляет почти – 1/3 массы Главного пояса (3.0±0.2)×1021. Поверхность Цереры относительно теплая и она может иметь тонкую атмосферу и лед. Температура на поверхности от 167 до 235 градусов Кельвина, максимальная температура, зафиксированная на поверхности равна -38°  С. Внутреннее строение предполагает дифференцированную структуру – каменное ядро и ледяную мантию толщиной 60 - 120 км, которая содержит 200 млн.куб.км воды, т.е. количество пресной воды больше земной. Космический телескоп Хаббла HST открыл два темных пятна, один с загадочно яркой областью, природа которой неизвестна. Предположительно, эти особенности на поверхности являются кратерами.

На телескопе Кека получена карта отражающей поверхности (альбедо) в ближнем ИК-диапазоне. Различимы географические объекты размером от 40 до 160 км в поперечнике. Отражающая способность изменяется в пределах 12%. По мнению ученых, эти различия обусловлены и наличием сложного рельефа, и неоднородным химическим составом пород поверхности Цереры.

Направление оси вращения (на эпоху 2000 года) — 287° прямого восхождения и 69° склонения (точность ± 5°).

Для изучения физических свойств Цереры NASA планировало запуск космической миссии Рассвет (Mission Dawn) в июне 2007 г. С помощью гравитационного маневра у Марса в 2009 г. сближение с Вестой должно произойти в 2011 г. , а с Церерой в 2015 г. Сейчас NASA объявило об отмене этой миссии из-за финансовых трудностей и технических проблем.

Наблюдения Цереры на большом телескопе Южной Европейской обсерватории в Чили намечены на ноябрь 2007 г.

Вторая карликовая планета Плутон может рассматриваться только как двойная планета. МАС нашел принципиальное отличие понятия двойной планеты от системы планета-спутник, а именно, в двойной планете центр масс системы находится в открытом космосе (Плутон – Харон), в системе планета–спутник он находится внутри планеты (Земля – Луна). Двойная планета движется на среднем расстоянии 39.5294 (а.е.), на вытянутой орбите с эксцентриситетом почти 0.25. Наклон орбиты 17.148(град) (к эклиптике). Орбитальный период 248.54 (лет).          Период вращения 6.38725 (сут). Плутон и Харон движутся вокруг барицентра системы по круговым орбитам на расстоянии 19 640 км друг от друга. Наклон орбиты к плоскости экватора Земли составляет 98.1. Период обращения Харона по орбите совпадает с периодом вращения Плутона вокруг оси и периодом вращения Харона, т.е. Плутон и Харон всегда обращены друг к другу одними своими сторонами. Диаметр Плутона равен 2306 км, Харона 1250 км.

Физические свойства Плутона. Температура на поверхности от –220 до –240°С. Поверхность покрыта льдом из замороженного азота с небольшим количеством метана. В некоторых районах на поверхность выходит водяной лед и даже немного льда монооксида углерода (угарного газа). Желтовато-розоватый оттенок придают оседающие из атмосферы частички сложных органических соединений, образующиеся из атомов углерода, азота, водорода и кислорода под воздействием солнечного света.

Вдоль поверхности замечены сильные перепады яркости. Визуальное геометрическое альбедо изменяется от 0.49 до 0.66. О внутреннем строении можно судить по низкой средней плотности 1,7 г/см3 , т.е. Плутон состоит на 1/3 из каменных горных пород и на 2/3 из водяного льда. Каменное ядро диаметром 1 500 км окружено слоем водяного льда толщиной 400 км. Атмосфера обнаружена в 1988 г. Состоит из азота с примесью метана и угарного газа. Давление ничтожное 0,3 паскаля. Слабое гравитационное поле не в состоянии удерживать атмосферу, и она постоянно улетучивается в космос, на ее место приходят новые молекулы, испаряющиеся с ледяной поверхности, т.е. для Плутона характерна «кометная» природа атмосферы. Самые большие изменения в атмосфере связаны с сезонами. В зимний период – замораживание атмосферы. Увеличение температуры азотного льда на поверхности планеты всего на 2° приводит к возрастанию массы атмосферы в 2 раза. «Летний» период сохранится и в 2015 г., когда КА «Новые горизонты» приблизится к Плутону.

В 2006 г. открыты два новых спутников Плутона. Объекты, предварительно названные S/2005 P1 и S/2005 P2, получили названия Никта и Гидра наблюдались с помощью космического телескопа Хаббла. При условии, что орбиты являются круговыми и расположены в плоскости орбиты Харона, были вычислены их размеры и периоды обращения спутников вокруг Плутона. Для первого спутника большая полуось круговой орбиты составляет примерно 64700 км, период Р = 38.2 суток. Для второго спутника S/2005 P2 большая полуось круговой орбиты составляет 49400 км, а период обращения 25.5 суток. Если предположить, что спутники имеют отражательную способность 4%, как у самых темных ядер комет, то диаметр большего из спутников Гидры составляет 160 км. При альбедо, характерном для Кентавров, а именно 15%, размер спутника – 80 км; если же альбедо такое, как у Харона 38%, то диаметр спутника составляет 52 км. Спутник Никта на 25% слабее первого, и при условии, что отражательные способности у них одинаковы,  размер второго спутника на 10% или 15% меньше первого. Поиск неизвестных спутников в зоне орбитальной устойчивости, составляющей (±100″) вокруг Плутона, не показали каких-либо потенциальных спутников ярче, чем видимая величина V =27.1.

Харон покрыт водным льдом, а не метаново-азотным, как Плутон Спутники Никта и Гидра нейтрально серые как Харон, не имеют фотометрических вариаций, повидимому сферической формы (D PII = 170 км, D PIII = 110 км ).

Предполагается общее происхождение системы гигантским столкновением с прото-Плутоном, в результате которого Харон получил эксцентрическую орбиту. В дальнейшем приливное взаимодействие привело к резонансным, компланарным и почти круговым орбитам Харона, Никты и Гидры, а также синхронизации вращения Харона с орбитальным движением и с вращением Плутона.

В июле 2005 г. М.Браун, Ч.Трухильо и Б.Рабинович сообщили об открытии еще трех крупных транснептунных объектов 2003 UB313, 2005 FY9 и 2003 EL61 (табл.2). Самый большой из них 2003 UB313  имеет абсолютную величину Н = -1.48, т.е. он ярче Плутона, для которого Н = -1.0 Оказалось, что это объект рассыпающего пояса (Scattered-Belt object) с орбитой, имеющей большую полуось 67.66 а.е., эксцентриситет 0.44 и большой наклон 44°.2 к плоскости эклиптики. Объект был обнаружен почти в афелии – на самом дальнем расстоянии от Солнца 97 а.е. – и имел видимую величину V = 18.5. Период обращения объекта вокруг Солнца составляет 560 лет, поэтому он достигнет ближайшего расстояния от Солнца в перигелии 37.8 а.е. только в 2257 г.

Видимая фотометрия на 1.3-м SMARTS телескопе и инфракрасная фотометрия (Gemini North Observatory) показали очень высокую отражательную способность. Космический телескоп Хаббла уточнил геометрическое альбедо и размер Эриды. Отражательная способность из-за замерзшего метана составляет 0.85 ± 0.07. Размер Эриды превышает диаметр Плутона только на 5% и составляет примерно (2400 ± 100) км (диаметр Плутона 2306 км).

В спектре ближней инфракрасной области Эриды доминируют линии абсорбции метана, т.е. объект в значительной степени подобен Плутону. Его поверхность покрыта твердым замерзшим метаном и представляет собой смесь камня и льда. В ближней инфракрасной области присутствуют линии азота N2 и окиси углерода CO, свойственные Плутону, а также линии углекислого газа CO2, присутствующие на Тритоне.

Основным отличием в видимой части спектра является то, что поверхность Плутона в среднем красная, в то время как новый объект почти серый. Различие можно объяснить тем, что новый объект на расстоянии в 3 раза большем, чем Плутон, является более холодным, и метановый лед более равномерно покрывает поверхность. Поэтому альбедо более однородно по поверхности и равно или выше, чем у Плутона. Открытие объекта на таком большом расстоянии от Солнца (97 а.е.) представляет более низкотемпературную лабораторию для изучения явлений, свойственных Плутону – замораживание атмосферы, химию льда, фазовые переходы азота. Температурные вариации от афелия к перигелию даже более экстремальны, чем у Плутона.

В сентябре 2005 г. на обсерватории Кека с помощью адаптивной оптики обнаружили слабый спутник у объекта 2003 UB313. Он находился на расстоянии 0″.53 от главного тела и имел видимую величину на 4m.43 меньше, т.е. в 60 раз слабее основного тела. Примерный диаметр спутника 350 км.

На телескопе Кека получены изображения самых крупных транснептунных объектов. Три из четырех имеют спутники. Два объекта причислены к карликовым планетам. Рассмотрим, могут ли другие два объекта также быть причислены к карликовым планетам.

Следующий по яркости объект 2005 FY9 оказался классическим объектом пояса Койпера с большой полуосью орбиты 45.7 а.е., эксцентриситетом 0.15 и наклоном 29°. Период обращения вокруг Солнца составляет 309 суток. Размер 1500 км при альбедо Плутона. Спектр подобен Плутону. Доминируют линии твердого метана, причем линии метанового льда сильнее, чем у Плутона. Красный цвет указывает на присутствие органических молекул. Присутствие азота и угарного газа. Возможна атмосфера, сравнимая с атмосферой Плутона. Возможный кандидат в карликовые планеты.

Объект 2003 EL61 - четвертое по яркости тело после 2003 UB313, Плутона и 2005 FY9. Это типичный классический объект пояса Койпера  с большой полуосью его орбиты 43.3 а.е., эксцентриситетом 0.19 и наклоном орбиты к плоскости эклиптики 28°.2. Орбитальный период составляет 286 лет.

Однако период вращения тела 2003 EL61 порядка четырех часов оказался очень необычен для большого тела размером более 100 км. Даже твердое тело среднего размера существенно деформируется при вращении с такой высокой скоростью. Тело является сильно вытянутым эллипсоидом с наибольшей осью 1960 км и альбедо 0.6 – 0.7. Объект 2003 EL61  является третьим телом после Плутона и Эриды, который покрыт замерзшим метановым и водяным льдом и имеет относительно нейтральный цвет, в котором имеются вкрапления более темного и более красного материала.

 Наблюдения на телескопе Кека показали присутствие двух спутников объекта 2003 EL61  на почти круговой орбите с периодами обращения 49  и 25 дней. Была определена масса системы 4.21×1021 кг, что  составляет 32% от массы Плутона. Спутники очень малы, масса составляют всего 1% от массы тела. Спектры в инфракрасной области, полученные на 8-м телескопе Джемини и 10-м телескопе Кека, показали явное наличие линий водяного льда на спутнике. Однако изучение орбиты спутника у астероида 2003EL61 показало, что система находится только в 4 градусах от положения, когда она была ребром к наблюдателю (Рис.7). Взаимные покрытия и затмения в системе происходили в 1999 г. и не будут происходить еще 133 года до 2138 г.

Еще более слабый спутник Санты, который имеет временное обозначение S/2005 (2003 EL61) 2, найден  на снимках, полученных на обсерватории Кека в июне 2005 г. (IAUC 8636). Яркость второго спутника транснептунного объекта 2003 EL61 составляет всего 1.5% от яркости основного тела. Был вычислен период обращения этого спутника вокруг основного тела в предположении круговой орбиты. Он составил 34.7 суток. Интересно, что два спутника обращаются вокруг основного тела не в одной плоскости, как можно было бы предположить. Плоскости орбит двух спутников наклонены друг к другу под углом ( 39 ± 6 ) градусов. Для более точного определения параметров орбиты второго спутника требуются дополнительные наблюдения.

КА Новые горизонты запущен в 2006 г., с помощью гравитационного маневра у Юпитера в 2007 г. он достигнет  Плутона в 2015 г.  В его задачи входит изучение состава атмосферы Плутона и процессов в ней происходящих. Геологические структуры Плутона и Харона и химический состав материала поверхности планеты и ее спутника. Взаимодействие потока заряженных частиц, выброшенных Солнцем (солнечного ветра), с атмосферой Плутона и с какой скоростью атмосферные газы улетучиваются в космос.

Полет через пояс Койпера может занять еще от трех до шести лет, когда продолжится изучение других тел – остатков древнейшего материала, сохранившегося со времени образования планет Солнечной системы.

Обработка научных данных будет проводиться в двух оперативных научных центрах — имени Томбо в Боулдере (Колорадо) и имени Кристи в Лореле (Мэриленд), названных в честь первооткрывателей Плутона и его спутника Харона.

 Итак, общие свойства карликовых планет следуют из самого определения – объект обладает достаточной массой, чтобы тело могло принять гидростатички равновесную форму. Нижняя граница массы и размер тела не определены, но для трех указанных тел она порядка 10 21 – 1022 кг.

По орбитальным характеристикам они принадлежат различным классам орбит, а именно, Главному астероидному поясу, поясу Койпера и рассеянному поясу. Таким образом, тела, подвергшиеся дифференциации слоев и переработке на основе происходящих внутри процессов, присутствуют во всех областях Солнечной системы. Этим они отличаются от астероидов и других транснептунных объектов, которые представляют собой остатки первичной материи, не подвергшийся переработке и сохранившихся в неизменном виде со времени образования Солнечной системы. Изучение процессов, которые могли привести к гидростатическому равновесию при разных условиях образования, освещенности, солнечного излучения и температур – выделяет эти объекты в один класс, число объектов которого может возрасти в ближайшие годы до 45 и более членов.