Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://imaging.cs.msu.ru/pub/2007.JProg.Yurin_Volegov.Draft.ru.pdf
Äàòà èçìåíåíèÿ: Mon Oct 13 23:00:00 2008
Äàòà èíäåêñèðîâàíèÿ: Mon Oct 1 19:46:44 2012
Êîäèðîâêà:

Ïîèñêîâûå ñëîâà: m 63
,
.. *, .. ** * - ( ) ** . .. dvolegov@rambler.ru yurin_d@inbox.ru . . 6 . . , . . ( ), . , 3D , . : , , , , , , , , .
1.

, . [1], . , .. , [1,12]: 1) , ; 2) , ; 3) , , , ; . , . , . : , , .


() [2-4]. [2] () , . 1.8 [2]. - , . , . , , . , .. . , , , , - , , , . , / , . [3] (Image Registration, Image Matching), . . [2] , , 4 . , [3] , , . [2] , . . [5], [3] . [4] , 6 , , , . . [6], , . (Scale Space) [7]. 7, [8,9]. RANSAC [10] , . [4] RANSAC , 50%. [4] , . , , , , , , . [11], [12] [13-21]. , .


[11] , , , . (, ) - [2]. . . [1] ( 0 N ), , . ( ), [2]. , , . , , ( ), [22]. , [2] 1/3 45°. [2] , , [4] [3] , , , RANSAC [10] , . , [11] , . , , , . , [11] ( ) (. 4.4). [12] . [4]. , , , , . , . [11] . [6,4,7], . RANSAC 4 . , . , -


. . . [11] , , , , . , [12] «» . , , , . , , [13-15] [16-21], (shape from motion) . , , , [1], (Rectified stereo). , [23] . , (disparity map), . [13] , . , , , . [23] , 7 . , [24,25], , , , , RANSAC. , , . ( ) [21] , [16-20]. , , , . , , / . , , , , ,


Loreo (www.loreo.com), , - , . [16-20], , , , . , . , [6,4] [7] [8,9]. . , . [26] , . [7,4], [27,28] , . , . , , . . [27] . , , - . , , 12 . RANSAC . , , . [29] , , , . . , . , . , . , , ( , [30]). , . , , . ,


. . , [29] , , . , . , , , , , . , . . [31], (), () , - . , , .
2.

[32]. , , , . , . , . , , . , , [44], [45], [46]. , . N 2 N ( N - 1) / 2 . O ( N ) , ( N ~ 10 ). [33]. . 2.4. O ( N log N ) [34,35]. [34] . kN , k = 2 Â 5 . [35] . , [34]. , , , , . [36,37] . 6


. N O ( N log N ) '' , , O (log N ) '' . , N 16 N

log N + 1 , 2

( , [34,35]). [35], 2.4, 4.3 2.1 , [38]. cas :

cas( x) sin(x) + cos(x) = 2 sin( x +


4
n

)

(1)

H ( ) f ( x) , x, R [38]:

r

r

rr

r r rr r H ( ) = f (x)cas(2x T )dx r r rr r f (x) = H ( )cas(2x T )d

(2)

:

(3)

:

r r H ( ) = Re( F ( )) + Im(F r r F ( ) f ( x) : r r rr F ( ) = f (x)exp(2ix T
:

r ( )) r )dx

(4)

(5)

r r rr r f (x) = F ( )exp(-2ix T )d

(4) (5). (5) [38] [39], [39]. h = ( h0 ,L h () f = ( f 0 ,L f

r

r

N -1

) T

N -1

) T [38]:
hi = 1 N


j =0

N -1

f j cas

2ij , i = 0K N -1 N

fj =


i =0

N -1

2ij ji cas , N

(6)

j = 0K N - 1

[38]. () O ( N log N ) .


[38] N â N F N â N H :

H


i, j

=


k =0 l =0

N -1 N -1

Fk ,l cas

2 (ik + jl ) , i, j = 0K N - 1 N


(7)

( cas

2 (ik + jl ) 2ik 2jl ). [47], cas cas N N N





, (10) (9). (1) sin() cos() :

cas(a + b) =

1 [casacasb + cas(-a)casb + casacas(-b) - cas(-a)cas(-b) 2 H 1 [H i, j + H p, j + H i,q - H p ,q ] 4 p = ( N - i ) mod N , q = ( N - j ) mod N
i, j

]

(8)

(8), (7)

=

(9)

H 'i , j =


k =0

N -1

cas

2ik N


l =0

N -1

Fk ,l cas

2jl N

(10)

a mod b a b .

H

0, 0

(7) ( ) ( ).

. F H (. 1):

H

0 i, j

=H

r ,s

r = (i +

N N ) mod N , s = ( j + ) mod N 2 2
0

(11)

H i , j . (11) (9) (. 1):

H

0 i, j

=

H r,s + H ,s + H r,q - H p p 4

,q

N N - i ) mod N , q = ( - j ) mod N 2 2 N N r = ( + i ) mod N , s = ( + j ) mod N 2 2 p=(

(12)

, , (12) , inplace ­ (9),(10) . , . , log N


; , , .

. 1.

. 1. (12)

1. F (inplace). 1. (. 1); 2. F (inplace); 3. (inplace); 4. (inplace) (.. ); 5. (inplace); H ' ; 6. H ' (9),(10), H F ( N / 2, N / 2) . 2.2 . . , (). [40]. :
0

( x = x + ( x - u 0 )(k1r 2 + k 2 r 4 ) ( y = y + ( y - v0 )(k1 r 2 + k 2 r 4 ) ,
2

(13)

r 2 = ( x - u 0 ) 2 + ( y - v0 )

x, y ( ), x , y . u 0 , v0 , k1 , k 2 . [41]. x, y B 2 â 2 :

((

B ( x, y ) =


i

I ( x, y ) rr r g igT , gT = i i i x

I i ( x, y ) y

(14)


I i ( x, y ) ( RGB). =2Â3 . B C ( x, y ) x, y :

r r C ( x, y ) = 1 (B( x, y )) - 2 (B( x, y )), Bh i = i h i , 1

2

(15)

C ( x, y ) (15) . C ( x, y ) . 2.3 . 2.3.1 , - : , , (. 2). . [0, ) . . , :
. 2.

x cos + y sin =

(16)

r 2.3.2 m -

x, y .
r

m , ,r (. 3). m :

r m=

cos sin 2 2 w + w

-

r , | m |= 1 w



T

(17)

w , /. 2.4 ( ) . , [34] , 6 . I ( x, y ) ( ). , . I ( x, y ) [33]:

R ( , ) =



I ( x, y ) ( - x cos - y sin )dxdy

(18)




( x)dx = 1

(19)

( x) - . R( , ) I ( x, y ) , . , , , R ( , ) . [33] , . x, R

rr

2

.

:
r r A f ( x ) = g ( )

(20)

:
: : :

H

(1)

r r f (x) (1 , x2 ) = f (x)cas(2x11 )dx1
( 2)

(21)

H

rr r rr r f (x) ( ) = f (x)cas(2 T x)dx

(22) (23)

:

r P f (x) (r , ) = f (r cos , r sin ) r r rr r R f (x) ( , ) = f (x) ( - x T k )dx, r k (cos , sin ) T

(24)

1. r f ( x) :
r R f ( x) ( , ) = H (1)

PH

(2)

r f ( x ) ( , ) ,
(1)

(25)

. (3), H

(25) : (26)

H H
(1)

(1)

r R f ( x ) ( r , ) = P H

(2)

r f ( x) ( r , )

(19),(24),(21) (26) :

r r rr r r rr r R f (x) (r , ) = f (x) ( - x T k )cas(2r )dxd = f (x)cas(2rx T k )dx
( 2) r r rr r r r rr r f (x) (r , ) = P f (x)cas(2x T ))dx ( ) = f (x)cas(2rx T k ))dx

(27)

(26):

PH

(

)

(28)

, (27) (28) . (25) I ( x, y ) :


2. . 1. H ( x, y ) I ( x, y ) (. 1).

2. H ( x, y ) , P ( r , ) . ( r , ) P ( r , ) H ( x, y ) ( r cos , r sin ) ( ). 3. P ( r , ) . 1, R ( , ) I ( x, y ) . ( ). , [34]. .3 (. 3) (), . .3. , (. 3), . 3 ­ (. 3), , 2.2. , . . . (. 3,), . . 3,. . 3, ( ), . , , . , , (. 2.2) . . 3,. , ( ) .

d2 L( x) = 2 dx
:

x2 exp(- 2 ) 2 2 2 1

(29)

(H

(1)

L( x))( ) = 2 exp(-

2
2

2

)

(30)

[38], ( ), ( ). L( x) , (25) :
r R f ( x ) ( , ) = H (1)

FL PH



( 2)

r f ( x ) ( , ) ,

(31)

FL L( x ) .


(25) , u1 ( x) -

u 2 ( x, y ) = u1 ( x 2 + y 2 ) .

. 3. (1224x1632) . 3. (1224x1632)

. 3. (1224x1632)

. 3. . 3 (2048x2048)

. 3. . 3 (2048x2048) . 3. . 3.

. 3. . 3 (2048x2048) . 3. . 3 (2048x2048) . 3. . 3.


[34] , . , . . [41], (. 2.2), , . [34] . , , , 2 ( , [34]) , (, ..). , , . . 2, . , . [41] . . . «» . «» ( ), . 3. . 1 1. I th : I th = I min Lmin , I min Lmin 3 , . . 2. . , «» , , .

3. , B : a. B , , «» . b. B . 4. , .2. 5. , 4 , - , . 6. , «» .
2

, , , . (.4) . Intel Pentium 4,


2.8 , 1 , 1 Windows-XP, Microsoft Visual Studio 2003 (ver. 7.1). 100 10 [34] 1 81928192 . 0.1 . Proposed algorithm 0.01 Algorithm [34] 64 128 256 512 1024 2048 4096 8192 [34]. Image width (=height), pixels . , - . 4. 2 O( N log N ), N = M . , [34] 6 , [39] , [38], [38], ( , Intel P3, P4 , [38]). (128 256 ) 6 1.5 , . 8192 6 - , [34], . , [34] 6 , . , [34], . , AMD : 8 6.
Calculation time, seconds

3. ()

, P ( 3x3), , [1]:

r r h1 h 2 - :

r r h 2 = P h1 ,

(32)

r h i = ( ~i , ~i , ~i ) T , i = 1,2 xyz

(33)


, P -, . 3.1 (. 5). r F1 F2 . n . i1 , j1 , k 1 i2 , j2 , k 2 .

rrr

rrr

1 2 , k 1 k 2 .
r rrr rrr R ( i1 j1 k 1 ) = ( i2 j2 k 2 )

r

r

1 2 . i1 , j1 i2 , j2

rr

rr

t . R : (34)



F1 d1 , ( d1 0 ).
, 1 2 :

r rT t P = R I - n d1
T

(35)

. 5. .

I - 3x3.

3.2 P . 1 , 1 2 , 2 - r . m - (. 2.3.2). , i - : rr (m i , h i ) = 0 , i = 1,2 . (36)

, (32) :

r m 1 r m2 = r, | m 1 |

(37)



= ( P -1 )

T

(38)

- [39]:

r A -1u r r T -1 -1 ( A + uv ) = A - 1+

r ( vA -1 ) rr vA -1u

T

(39)


(35) P , (38) :

rr nt T = R I + rr d1 - ( t , n)
T

(40)

2. , , :

r | t | d1 ,

(41)

:

1 1 | ( ) | 1+ 1-
. r , e :

(42)

rr r n t T r n r T | e |= R I + r r e = I + d1 - ( t , n) d1 - rr n t T r 1 r r e 1 =1- I + 1+ 1+ d1 - ( t , n)

rT r t r r e ( t , n) 1 + = 1- 1-



(43)

r t , . (42)
4.1.1, 4.2.
4.

.

P , 1,i , 1,i 2 , j , 2 , j . : 1. . 2. . 3. , , . . ( ). , . .


4.1 4.1.1 F , :

F = F (P, 1,i ,1,i , 2, j , 2 , j )

(44)

, P , ( ) P . :

F=


i =1 j =1

N

1

N

2

cij Fij

(45)

r r | m 2 , j â m1,i |2 Fij = - exp - 2 2 f

(46)

cij i - j - , 4.3, 4.4 Fij i - ( P ) j - . i - P j - , Fij -1.

f ,
r |m r â m1,i |>>

. (42) r r , m1,i m 2 , j f , | Fij |<< 1:
2, j
f

| Fij | 0

(47)



f = 0.01 Â 0.2 ,

f (. 4.2). f : f <
1 (48) min sin j , j , 2 j ,j ,j j r m 2 , j . (48) ,
1 2 1 2 1 2 2







j1 , j

2

- m

r

2 , j1

i Fij .
, .
4.1.2 (45) (. r (35)): R , n ,


r t . , d1
3x3. , , , , . , . n k 1 , , , . r k1 :

r

r

r n = (0,0,1)

T

(49)

r k 1 (. 6, ) . , i1 r r r j1 , j1 i1 . R :
. 6.

r

cos R = R = sin 0

- sin cos 0

0 0 1



(50)

(49) (50) :

r :

r ( , t ) =

cos - sin

sin cos



1-

x



y z

z

1-

0 0 1 1- z

(51)

rt = d1

(52)

(44) r ( , ) , (51). , (45) , , , . . , (. 4.2) , . -


, , .

4. : r 1. ( , ) . 2. (10~100), . 3. [39]. 4. , . . , «» . , ( 16 !). . r m . :

r rr r f 0 ( , t ) =| m â ( , t )m |

2

(53)

:

r F0 (0, 0) . 0 r , , t . , r ( ) F0 (0, 0) :
2 2 2 ( mx + m y ) 0 mx H0 = 0 mx m 2 0 mx m

r r f 0 ( , t ) F0 ( , t ) = - exp - 2 2

(54)

1

0

0 mx my
y z

mm

m my mz
2 y

mm m

x z y z 2 z

0

(55)

H 0 :

1 = 2 =

2 (m x2 + m y )



3, 4

2

r h1 = (1,0,0,0)
3, 4

T

r 0 h2 = r m

=0

r h

= , 0 r v

(56)

rr v m

, F0 r m , r , , m . r | m |= 1 , (56) :


max( (H 0 ))

1



2

(57)

N1 (48) :

max( (H 0 ))

N



1 2

(58)

(48) Fij , i j . (58), , . , , :

1r r r r F ( s ) = - N c + s T Hs , s 2

=r t

(59)

r max( (H )) 1 2 , , | s |< r : | F ( s ) | N c / 2 .

N c - .

| F | N c / 2 . N c ,

, .1 4 , .2 ,

N c = min( N1 , N 2 ) / 2 . ,

N c , .
4.2 , , . , f ,

, . f , . r , i n i di . i . . r R t . i i , i , :

rr ni t T rr i = R I + di - (t ,ni )
T

(60)


m

r

1,ij

,

i r m 2 ,ij . (37) r i m1,ij r = m 2 ,ij , i, j r | i m1,ij |

j - ,

. -

(61)

( , ) n 0 d 0 , 0 :

r

rr n0 t T rr 0 = RT I + d0 - (t,n0 )

(62)

q ( 0 ) :

q ( 0 ) = max i , j , i, j r r i , j - m 2 ,ij 0 m1,ij .
m

(63)

(62) 0 ,

r

1,ij

0 m

r

1,ij

m

r

2 ,ij

-

q ( 0 ) . (48),

f q( 0 ) -

. r q ( 0 ) , n i di . , q ( 0 ) n i di . ( ) , , r 1. n i (

r

r n i , , .

r |t| 2. [0, ] di
q ( 0 ) :

. 3)

q( 0 )


1-

(64)

(48) (64)

f:
(65)


1-


f

1 min sin 2 j ,j ,j j
1 2 1 2

j1 , j

2



j1 , j

2

(48) .



f

, 4 . f (65).


: . . , , , (



j1 , j

2

<



1-

)

. , . f . (32).
4.3 ­ , . , , . . , . , , . , (/), ( ). [42,43]. «» . (), . , . cij (45). l

d 1 d 2 ­ . d : r , g , b :

r

r

r

r d = ( r , g , b)

(66)

, r , g , b [0,1] . r I (p ) O (. 7). C (p ) . O : 1. O 2 wm = 6 , l . , (. 2.2). r 2. O I (p ) .

r

. 7. ,


q O wq , . -, q p , l , r , q . , l , , , · · ; , .

r

r

r

I (p ) = ( R (p ), G (p ), B (p )) , r p = ( x, y ) . :
T

rr

r

r

r

4.

p l :

r d = 0, W =0
o

r

r w p = C (p ) r o m l, p m .

r r q0 = p : r · qn =

·

r rr n -1 ) | p - q n |> wm , . rr /. (67), (68)/ · wq = f1 ( w p ) f 2 (| p - q n |) rr rr · d = d + wq I (q n )
C (q n ) > C (q

r qm: r r m q n -1 + r : |m|

r

r rd d= W

·

W = W + wq

f 1 ( wC ) f 2 (t ) :

f1 ( w p ) = w

p

(67)
2

f 2 (t ) =
4.4

t

2

2 +t

(68)

. :


a AND b a b NOT a 1 - a

(69) (70)

a , b - . :

a OR b = NOT (( NOT a ) AND ( NOT b))
(69), (70) (71) :

(71) (72)

a OR b 1 - (1 - a ) (1 - b)

(72) «» . , a = b = 0.5 , a OR b = 0.75 , . , , . YUV, , , , , HSV. (66) Y,U,V : r r Y (d) = ( 0.299 0.587 0.114) T d r r (73) U (d ) = ( -0.147 - 0.289 0.436) T d r r T V (d ) = ( 0.615 - 0.515 - 0.1) d v :

r

r v = (U ,V )

(74)

: R1 : , (« »). R2 : , .

, ( )

Is(Y ) rr Ce( v 1 , v 2 )

max(0,1 - Y ) rr max(0,1 - | v 1 - v 2 |)

Ie(Y1 , Y2 )

Is(| Y1 - Y2 |)

: = 1 3 noise , noise - ( noise 0 255 noise = 1 Â 3 ).


: = 1 10 noise . , , , . R1 R2 R1 R2 ( ):
c c

rr rr R2c (d1 , d 2 ) = ( NOT Is(Y1 )) AND ( NOT Is(Y2 )) AND Ce( v1 , v 2 ) AND Ie(Y1 , Y2 )
c

rr R1c (d1 , d 2 ) = Is(Y1 ) AND Is(Y2 )

(75) (76)

rr R2c De(d1 , d 2 ) - (
):

R1 R2 R1 ,

rr rr rr (77) De(d1 , d 2 ) = R1c (d1 , d 2 ) OR R2c (d1 , d 2 ) r1 r 2 d1 d 1 , r1 r 2 d 2 d 2 .
:

( d1 d 2 d 1 d 2 ) ( d 1 d 2 d1 d ), .

R3 :

r

1

r

1

r

2

r

2

r

2

r

1

r

1

r

2 2

d 2 ), . R3 , . R4 , ( ). , R3 , R4 . R3 R4 R3 R4 ( ):
c c

r

r r r r r r r R4 : ( d1 d12 ) ( d1 d 2 ) ( d12 d12 ) ( d 1 1 2

2 1

2

rr R3c (d1 , d12 , 1 r OR (De(d r R4c (d1 , 1

rr rr rr d12 , d 2 ) = (De(d1 , d12 ) AND De(d12 , d 2 )) OR 2 1 2 r1 r1 r 2 2 , d 2 ) AND De(d1 , d 2 )) 1 rrr rr rr d12 , d12 , d 2 ) = De(d1 , d12 ) OR De(d12 , d 2 ) 2 1 2 r 2 r1 r1 r 2 OR (De(d1 , d 2 ) OR De(d1 , d 2 )

(78)

(79)
c

rrrr R4c Le(d1 , d12 , d12 , d 2 ) - ( 1 2
):

R3 R4 R3 ,

rrrr rrrr rrrr (80) Le(d1 , d12 , d12 , d 2 ) = R3c (d1 , d12 , d12 , d 2 ) OR R4c (d1 , d12 , d12 , d 2 ) 1 2 1 2 1 2 r1 r2 d 1,i d1,i i - r1 r2 , d 2 , j d 2 , j j - . cij (43) i - j - :


rrrr cij = Le(d1,i , d12,i , d12 , j , d 2 , j ) 1 2
5.

(81)

. 1. «» , . «» (.(82)). 2. (37). 3. «» . , . 4. «» , . 5. (88). . , ( ) . . . , , , . , , . «» . '1,i , '1,i i - ,

2, j ,

2, j

- j - . C '1 ( x, y ) C 2 ( x, y ) -

. i - j - j - i ; C '1 ( x, y ) C 2 ( x, y ) :

bij = b( x, y )C '1 ( x, y )C 2 ( x, y )dl b( x, y ) = x cos '1,i + y sin '1,i - '1,
i

(82)

j - , :

x cos

2, j

+ y sin

2, j

-

2, j

=0

(83)

«» :


b
:

2

ij

= b 2 ( x, y )C '1 ( x, y )C 2 ( x, y )dl

(84)



2

ij

=b

2

ij

- (bij )
ij

2

(85)

j - , b b
2 j
2


2

:

b
2

2

j

= min b i
2

ij

(86)
2 2 2

m b j , j , j j - :

m 2 = median b
j

2

j

2 = median j
ws = m 2 + 3

2

(87)
j

ws :
2

(88)

6.

, : - : , ; : · ( 2.2, (15)) · () ( 2.4, 2) · ( 2.4, 3) · ( 4.3, 4.4, 5) · ( 4.1, 4.2, 4), · ( 4) .
7.

.8-11. , ­ - . , , .


. 8. «». : - , - , - . : - ,

. 9. «». , . 8


. 10. «». , . 8

. 11. «». , . 8

Intel Pentium III, 800 .


t , t

a lg

: t
proj

radon



, t
best



:

t
t
radon

a lg

=t

radon

+t

proj

+t

best

(89)
radon

= O( N log N ) , N . 1024 â 1024 t radon
: t 1 . t
proj

.



N

= O ( N 1 N 2 ) , . N1 , N 2 10-15 , 1, t proj t
proj

1



N

2

:

100 .
1. .

, , % , % t

-180 -70 50

180 70 200

best

.
best

(3-5), t

= O( N ) .

1024 â 1024 t
8.

best

.

, . . , . , , [34, 36, 37]. . -, , . -, , . -, , . «» . , 3D . , , «» .


9.

, 06-01-00789-, 05-0790345-, 05-07-90390-. . (Department of Engineering and Design,School of Science and Technology,University of Sussex, UK) [34], ..-. .. . . .. .
10.

1. R. Hartley, A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press 2004, 672 p., ISBN: 0521540518. 2. B. Srinivasa, B.N. Chatterji, "An FFT-based technique for translation, rotation, and scaleinvariant image registration", IEEE PAMI, Vol 5(8), pp. 1266-1271, August, 1996. 3. Jianbo Shi and Carlo Tomasi, "Good features to track", IEEE Conference on Computer Vision and Pattern Recognition (CVPR'94) (Seattle), June 1994. 4. Y. Dufournaud, C. Schmid, and R. Horaud, "Matching images with different resolutions", Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR'00), 2000 (Hilton Head Island, SC, USA). -V. 1, -P. 612-618. ISBN: 0-7695-0662-3. http://citeseer.ist.psu.edu/dufournaud00matching.html 5. S. Birchfield and C. Tomasi. Multiway cut for stereo and motion with slanted surfaces. Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, September 1999, pp. 489--495. http://citeseer.ist.psu.edu/birchfield99multiway.html. 6. C. G. Harris and M. Stephens, "A combined corner and edge detector," In Proc. 4th Alvey Vision Conf., Manchester, pages 147-151, 1988. 7. Tony Lindeberg: Scale-Space Theory in Computer Vision, Kluwer Academic Publishers, Dordrecht, Netherlands, 1994. . http://www.nada.kth.se/%7Etony/earlyvision.html. 8. C. Schmid, R. Mohr. Local Grayvalue Invariants for Image Retrieval. //IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 1997, -V. 19, -No. 5, -P. 530-534. http://citeseer.ist.psu.edu/schmid97local.html 9. L.M.J. Florack, B.M. Ter Haar Romeny, J.J. Koenderink, and M.A. Viergever/ General Intensity Transformations and Differential Invariants. //Journal of Mathematical Imaging and Vision, vol. 4, no. 2, 171-187 (1994). http://www.bmi2.bmt.tue.nl/imageanalysis/People/LFlorack/Extensions/Flor94d.pdf 10. M. Fischler and R. Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, -V. 24. -No. 6. ­P.381­395, June 1981. 11. James Davis. Mosaics of scenes with moving objects. In Proc. Computer Vision and Pattern Recognition Conf., pages 354--360, 1998. http://citeseer.ist.psu.edu/davis98mosaics.html. 12. D. Capel, A. Zisserman. Computer Vision Applied to Super Resolution. //IEEE Signal Processing Magazine, May 2003. ­P. 75--86. http://www.robots.ox.ac.uk/%7evgg/publications/html/index.html. 13. V. Kolmogorov and R. Zabih. Computing visual correspondence with occlusions using graph cuts. In International Conference on Computer Vision, Vancouver, Canada, July 2001. http://www.cs.cornell.edu/rdz/Papers/KZ-ICCV01-tr.pdf. 14. Michael H. Lin, Carlo Tomasi: Surfaces with Occlusions from Layered Stereo. //IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. 15. D. Scharstein and R. Szeliski. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. IJCV 47(1/2/3):7-42, April-June 2002. http://cat.middlebury.edu/stereo/.


16. C.J. Poelman, T. Kanade. A Paraperspective Factorization Method for Shape and Motion Recovery. // IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997. ­V. 19. ­ No. 3. ­P. 206--218. http://citeseer.ist.psu.edu/poelman92paraperspective.html. 17. Joao Paulo Salgado, Arriscado Costeira. A multi-body Factorization method for motion analysis: //Tese para obtencao do grau de doutor em Engenharia Electrotecnica e de Computadores. /Universitade Technica de Lisboa Instituto Superior Rechnico. Lisboa, Maio de 1995. http://omni.isr.ist.utl.pt/~jpc/pubs.html . 18. Peter Sturm, Bill Triggs. A Factorization Based Algorithm for Multi-Image Projective Structure and Motion: //4th European Conference on Computer Vision, Cambridge, England, April 1996, pp 709-720. 19. . . , . . . . // 2004, .30, 5, . 48-68. 20. N.V. Sveshnikova, D.V. Yurin The Factorization Algorithms: Results Reliability and Application for the Epipolar Geometry Recovery. // In Conference Proceedings. 16-th International Conference on Computer Graphics and Application GraphiCon'2006 July 1--5, 2006 Novosibirsk Akademgorodok, Russia. 21. P. Pritchett, A. Zisserman. Wide Baseline Stereo Matching. //Proceedings of the 6th International Conference on Computer Vision, Bombay, India, Jan. 1998. ­P. 754--760. http://www.robots.ox.ac.uk/%7evgg/publications/html/index.html. 22. . , . , . , . . . . 2- . : , 2005 . 1296 . ISBN 5-8459-0857-4, 0-07-013151-1 23. R.I. Hartley. Theory and Practice of Projective Rectification. //International Journal of Computer Vision, -V. 35, -No. 2, 12 November 1999, -P. 115-127. 24. Z. Zhang. Determining