Документ взят из кэша поисковой машины. Адрес оригинального документа : http://galspace.spb.ru/indvop.file/3.html
Дата изменения: Unknown
Дата индексирования: Sun Apr 10 00:54:47 2016
Кодировка: Windows-1251

Поисковые слова: дисперсия скоростей
Открытие экзопланет, Планетные системы
 Научные статьи
Заходите к нам на форум: задавайте вопросы - получайте ответы!
Исследование Солнечной Системы - Астрономия
Космические исследования - экзопланеты
Предыдущая - Следующая
    

ОБЗОР ИТОГОВ ПЕРВОГО ДЕСЯТИЛЕТИЯ ИССЛЕДОВАНИЯ ЭКЗОПЛАНЕТ

Перевод обзора A Decade of Radial-Velocity Discoveries in the Exoplanet Domain

    Введение.
    Орбитальные свойства экзопланет.
    Число внесолнечных планет-гигантов.
    Распределение планет по массам.
    Распределение внесолнечных планет-гигантов по периодам.
    Распределение период-масса.
    Планеты-гиганты в кратных звездных системах.
    Эксцентриситеты планет-гигантов.
    Ниже массы Нептуна.
    Газовые и твердые планеты с короткими периодами.
    Многопланетные системы.
    Системы с орбитальными резонансами.
    Динамика. Планет-планетное взаимодействие.
    Корреляция металличности звезд с числом планет-гигантов.
    Металличность звезд, имеющих планеты с массами порядка массы Нептуна.
    Эффект массы центральной звезды.
    Независимое подтверждение транзитных планет.
    Будущее поиска планет с помощью наблюдений лучевых скоростей звезд.

Введение в "обзор итогов 1995-2005".

До 1995 года Солнечная система была единственным примером планетной системы вокруг солнцеподобной звезды, и вопрос о распространенности планетных систем был более философским, нежели научным. Открытие экзопланеты, вращающейся вокруг звезды 51 Пегаса, положило начало постоянному росту числа известных экзопланет. В течение следующих десяти лет стало известно, что газовые гиганты широко распространены, и что процесс формирования планет может давать удивительное разнообразие конфигураций: планеты с массами значительно больше массы Юпитера, планеты, движущиеся по высокоэллиптичным орбитам, планеты, вращающиеся на расстоянии менее 10 звездных радиусов, планеты в резонансных многопланетных системах и планеты, вращающиеся вокруг компонентов двойных звездных систем. Понимание физических причин такого разнообразия является центральной проблемой теории формирования планет. Роль наблюдений состоит в нахождении ограничений, которые помогут теоретикам моделировать широкий спектр свойств наблюдаемых внесолнечных планет.
Если к моменту первой конференции PPIV было известно 7 или 8 планет (и 17 кандидатов в планеты было оглашено во время слушаний), то сейчас число известных экзопланет превысило 170. Располагая таким количеством примеров, можно изучать статистически значимые тенденции, которые проявляются в распределении орбитальных элементов планет и свойствах родительских звезд. Особенности этих распределений - следы процессов формирования и эволюции экзопланетных систем, они помогают уточнить модели формирования планет.
В обзоре представлены основные статистические результаты, полученные с помощью спектроскопических наблюдений за последнее десятилетие. Дополнительно к орбитальным свойствам планет и характеристикам родительских звезд будет описана эволюция метода измерения лучевых скоростей за последние 2 года, а именно:
- роль, играемая доплеровскими измерениями в подтверждении и изучении кандидатов в планеты среди множества кандидатов, преложенных транзитными и фотометрическими программами,
- развитие специально разработанных спектрографов с высоким разрешением, достигающих точности в измерении лучевых скоростей порядка 1 м/сек.

Эта высочайшая точность позволит методом измерения лучевых скоростей находить планеты земного типа.

Орбитальные свойства экзопланет.

В результате работы множества программ поиска планет (Лик, Кек, AAT, ELODIE, CORALIE) и начала новых крупных проектов (напр. HARPS), нам известно множество внесолнечных планет. Наиболее заметная особенность их свойств - широкое разнообразие орбитальных характеристик. Это разнообразие бросает вызов привычным взглядам на формирование планет.

Рисунок 1. Диаграмма эксцентриситет - большая полуось орбиты. Величина "точек" пропорциона-льна минимальной массе кандидатов в планеты, т.е. величине m sin i (m sin i < 18 масс Юпитера)

Рисунок 1 показывает орбитальный эксцентриситет известных внесолнечных планет как функцию большой полуоси их орбит. На рисунке ясно видны различные свойства внесолнечных планет: малое расстояние до звезды, высокий эксцентриситет орбит, большая масса.

Статистические свойства гигантских планет должны быть получены из обзоров, которые сами хорошо статистически определены (например, включают в себя все объекты из ограниченного объема), и которые имеют хорошо понятные пороги обнаружения планет с различными орбитальными свойствами. (Говоря своими словами, очень важно учитывать факторы, приводящие к наблюдательной селекции. В.В.) Есть несколько программ, которые отвечают этим требованиям, включая программу поиска планет в ограниченном объеме CORALIE (Udry и др., 2000), а также FGKM-обзор на телескопе им. Кека, где рассматривались звезды ограниченной звездной величины ((Marcy et al., 2005). На приведенных в обзоре диаграммах представлены планеты, обнаруженные во всех программах поиска, основанных на измерении лучевых скоростей. Отметим, что обсуждаемые свойства планет согласуются со свойствами, полученными из единичных статистически хорошо определенных программ.

Число внесолнечных планет-гигантов.

Наиболее фундаментальное свойство, которое может быть получено из программы поиска планет - это доля рассмотренных звезд, у которых есть планеты. Учитывая типичную точность доплеровских измерений в несколько м/сек и ограниченную продолжительность наблюдений, мы можем определить эту долю только для специфической области параметров, а именно для планет с массами больше, чем Mmin, и с периодами короче, чем Pmax. Иначе говоря, мы можем найти только минимальную долю звезд, имеющих планеты, а именно, звезды с планетами, попадающими в ограниченную область параметров.
Для планет, чья масса больше 0,5 массы Юпитера, Marcy в 2005 году нашел по наблюдениям Lick+Keck+AAT, что 16/1330 = 1,2% солнцеподобных звезд имеют горячие юпитеры (период меньше 10 дней, большая полуось меньше 0,1 а.е.) и 6,6% звезд имеют планеты ближе 5 а.е. По результатам программы CORALIE (включающей звездные пары) для той же минимальной массы планет (1/2 массы Юпитера) только 9/1650 = 0,5% звезд имеют горячие юпитеры и 63/1650 = 3,8% звезд имеют планеты ближе 4 а.е. Однако двойные звезды с видимыми расстояниями между компонентами меньше 2-6 угловых секунд обычно исключаются из программ поиска планет (наряду с быстро вращающимися звездами). Поэтому если мы ограничиваемся звездами, подходящими для поиска планет (т.е. не двойными и с v sin i меньше 6 км/сек), то окажется, что для программы CORALIE 9/1120 = 0,8% звезд имеют гигантские планеты на орбитах ближе 0,1 а.е., и 63/1120 = 5,6% звезд имеют планеты ближе 4 а.е. В пределах статистических ошибок эти два результата находятся в хорошем согласии друг с другом.

Истинную долю наличия гигантских планет можно еще лучше оценить с учетом эффективности обнаружения (которая является функцией массы и орбитального расстояния), используя моделирование методом Монте-Карло. Для крупнейших обзоров это еще не сделано. Но для программы ELODIE (где наблюдались одиночные звезды ограниченной звездной величины) хотя и с большими статистическими ошибками, вызванными малым числом обследованных звезд, Naef и др. (2005) нашли, что доля звезд, имеющих горячие юпитеры с массой больше 0,5 массы Юпитера и периодом меньше 5 суток, составляет 0,7 + 0,5%, а доля всех планет такой же массы с периодом меньше 3900 суток составляет 7,3 + 1,5%. Похожие анализы были получены Cumming et al. (1999) для Ликского обзора и Endl et al. (2002) для программы поиска планет с помощью спектрометра Coud?e-echelle на обсерватории ESO. В совпадающей области параметров все три анализа находятся в хорошем согласии друг с другом.
Поскольку время наблюдений непрерывно растет и наша способность обнаруживать планеты меньших масс все совершенствуется, мы ожидаем, что доля звезд, имеющих планетные системы, окажется существенно выше относительно вышеприведенных значений и достигнет 50% и даже больше.

Распределение планет по массам.

Уже после обнаружения нескольких внесолнечных планет стало ясно, что эти объекты нельзя рассматривать как маломассивный хвост распределения звездных компаньонов в двойных звездных системах (с низкой величиной m sin i из-за малого наклонения i оси вращения системы к лучу зрения). Явный бимодальный вид распределения масс вторых компонент у звезд солнечного типа считался самым очевидным доказательством различия механизмов формирования звездных пар и планетных систем. Интервал между двумя популяциями (еще называемый "пустыней коричневых карликов"), соответствующий массам между 20 и 60 масс Юпитера, практически пуст, по крайней мере, для орбитальных периодов короче 10 лет. Однако вероятно наложение этих двух распределений; в этой области нелегко разделить маломассивные коричневые карлики от массивных газовых планет только по измеряемой величине m sin i, без дополнительной информации о формировании и эволюции этих систем. ("Рабочее" определение планеты было предложено рабочей группой IAU, основываясь на пределе массы в 13 масс Юпитера, достаточном для воспламенения дейтерия. Говоря своими словами, планета - это объект с массой, меньшей 13 масс Юпитера, объект с большей массой считается коричневым карликом или звездой. В.В.)

Рисунок 2. Распределение по минимальной массе (величине m sin i) спутников звезд солнечного типа. Виден глубокий минимум в области масс, соответствующей коричневым карликам (от 0,01 до 0,1 масс Солнца). Штрих прямоугольниками отмечены планеты, обнаруженные с помощью спектрометра HARPS.

Рассматривая маломассивную часть распределения планет по массам, мы видим, что с уменьшением массы количество планет растет. Marcy et al. (2005) нашел, что DN/dm ~ M-1,05 для их обзора FGKM. Это соотношение не зависит от неизвестного параметра sin i, который просто увеличивает вертикальную шкалу. Маломассивная часть этого распределения плохо изучена из-за наблюдательной неполноты; самые маломассивные планеты труднее всего обнаружить из-за того, что вызываемые ими лучевые скорости звезд малы. Весьма вероятно, что есть значительная популяция планет с массами меньше массы Сатурна. Эта тенденция подтверждается аккреционными моделями формирования планет. В частности, ожидается большое количество "твердых" планет.

Распределение планет по периодам.

Рисунок 3 показывает распределение по орбитальным периодам известных внесолнечных планет.

Рисунок 3. Распределение известных внесолнечных планет-гигантов, открытых с помощью метода измерения лучевых скоростей звезд и вращающихся вокруг звезд главной последовательности, по периодам. Заштрихованная часть гистограммы показывает "легкие" планеты с m sin i < 0,75 масс Юпитера. Для сравнения, черным показано распределение по периодам планет с массами порядка массы Нептуна.

Многочисленные планеты-гиганты, вращающиеся очень близко вокруг своих родительских звезд (период меньше 10 дней) стали совершенно неожиданными для исследователей. Стандартная модель (например, Pollack et al., 1996) предполагала, что планеты-гиганты формируются из ледяных гранул во внешних частях системы, где температура протопланетной туманности достаточно низка. Слипание таких гранул обеспечивает формирование твердого ядра, которое начинает притягивать окружающий газ в течение жизни протопланетного диска (примерно 10 миллионов лет). Однако обнаружение планет-гигантов глубоко внутри "ледяной линии" требует, чтобы эти планеты подверглись процессу перемещения, миграции по направлению к родительской звезде. Альтернативная точка зрения предлагает формирование таких планет уже "на месте", возможно, благодаря нестабильности в протопланетном диске. Заметим, однако, что даже в таком случае взаимодействие планеты и диска будет изменять орбиту планеты, как только та сформируется. Предполагается, что наблюдаемый максимум планет с периодами около 3 дней является следствием миграции, причем еще требуется останавливающий механизм, который препятствовал бы падению планет на звезды.
Другая интересная особенность распределения планет по периодам - это увеличение количества планет с ростом расстояния от родительской звезды. Это не эффект наблюдательной селекции, поскольку методом измерения лучевых скоростей из двух планет одинаковой массы легче обнаружить планету с более коротким периодом. Уменьшение количества планет с периодами больше 10 лет почти наверняка является результатом ограниченной продолжительности большинства программ поиска планет методом измерения лучевых скоростей.

Полное распределение планет по периодам можно представить себе состоящим из двух частей: главное распределение, в котором число планет растет с увеличением периода и максимум которого еще не определен, и вторичное распределение планет, мигрировавших внутрь системы. Наблюдаемый минимум планет с периодами между 10 и 100 днями реален и отражает область пересечения между этими двумя распределениями. Минимальная (плоская) экстраполяция распределения в сторону больших периодов примерно удвоила бы число образовавшихся планет. Согласно этой экстраполяции, существует большое количество еще неоткрытых планет-гигантов на расстояниях 5-20 а.е. Этот вывод имеет первостепенную важность для проектов по прямой регистрации внесолнечных планет большими телескопами, например, VLT или Gemini Planet Finder, и космическими миссиями, такими как TPF (НАСА) или Дарвин (ЕКА).

Распределение период-масса.

Распределение планет по орбитальным периодам подчеркивает роль процессов миграции, лежащих в основе наблюдаемой конфигурации экзопланетных систем. Дополнительная корелляция замечена между периодом и массой планеты. Эта корреляция проиллюстрирована на Рисунке 4, показывающем диаграмму масса-период для известных экзопланет, вращающихся вокруг звезд главной последовательности.

Рисунок 4. Зависимость период-масса для известных внесолнечных планет, вращающихся вокруг звезд главной последовательности. Пустые квадратики обозначают планеты, вращающиеся вокруг одного из компонентов двойной звездной системы. Черные точки обозначают планеты у одиночных звезд. Пустые точки показывают планеты из многопланетных систем. Звездочки соответствуют планетам с массой порядка массы Нептуна. Пунктирный прямоугольник очерчивает область периодов меньше 100 дней и масс больше 2,25 масс Юпитера. Точечная линия связывает 2 массивных компонента, вращающихся вокруг HD 168443.

Самая заметная особенность на этом рисунке - недостаток массивных планет на тесных орбитах. Это не эффект наблюдательной селекции, поскольку такие планеты легче всего обнаружить. Эффект становится еще поразительнее, если мы пренебрежем кратными звездами: на диаграмме оказывается полная пустота для масс больше 2 масс Юпитера и периодов меньше 100 дней. Есть только один кандидат HD 168443 b, возможно, являющийся членом двойной системы из коричневых карликов.
Сценарий планетных миграций может естественно привести к недостатку массивных планет на тесных орбитах. Например, было показано, что миграция 2 типа (когда планета очищает промежуток в диске) менее эффективна для массивных планет; иначе говоря, массивные планеты оказываются на более широких орбитах, чем маломассивные. Альтернативный вариант состоит в том, что когда мигрирующая планета оказывается слишком близко от звезды, процесс взаимодействия планеты и звезды приводит к перетеканию части вещества планеты на звезду и уменьшению массы планеты, или падению массивной планеты на звезду.
Другая интересная особенность орбитально-массового распределения - увеличение максимальной массы планеты с увеличением расстояния от родительской звезды (Рисунок 5). Это не эффект наблюдательной селекции: массивные планеты легче всего обнаружить именно на тесных орбитах, но они предпочитают находиться на более удаленных орбитах.

Рисунок 5. Средние (черные кружочки) и наибольшие (пустые кружочки) массы планет, усредненные по интервалу периодов с шагом log (периода, дни) = 0,2. Хотя массивные планеты легче всего обнаружить на короткопериодичных орбитах, наблюдается увеличение максимальной массы планеты с увеличением расстояния от планеты до звезды.

Это также можно понять в контексте миграционного сценария. Как ожидается, более массивные планеты формируются дальше в протопланетном диске, где большое