Документ взят из кэша поисковой машины. Адрес оригинального документа : http://crydee.sai.msu.ru/stev/theory.htm
Дата изменения: Mon Sep 9 16:41:34 2013
Дата индексирования: Thu Feb 27 20:30:34 2014
Кодировка: Windows-1251

Поисковые слова: флуоресценция
theory

 

Расчет внутреннего строения звезд и их эволюции производится путем численного интегрирования с использованием традиционной системы четырех дифференциальных уравнений строения звезд дополненных уравнением состояния плазмы. Решение этих уравнений позволяет найти пять независимых величин характеризующие внутренне строение звезды: давление P, температуру, плотность и текущие значения зависимости массы и светимости от радиуса и L(r). Подробно вывод этих уравнений можно посмотреть, например, в книге Зельдовича, Блинникова, Шакуры, "ФИЗИЧЕСКИЕ ОСНОВЫ СТРОЕНИЯ И ЭВОЛЮЦИИ ЗВЕЗД" 1981 http://www.astronet.ru:8101/db/msg/1175488 и далее в списке рекомендованной литературы.

Для перехода к расчету эволюционных моделей учитывается изменение химического состава из-за ядерных реакций на каждом временном шаге. (величины -- весовые доли элементов: водорода ( ), гелия ( ) и тяжелых элементов ( )).

Остановимся несколько подробнее на этих уравнениях:

1.                   Уравнение энергетического баланса.

где - текущая светимость в радиусе , [эрг/сг]- скорость выделения энергии состоит из трех составляющих

Первое слагаемое - скорость выделения энергии при ядерных реакциях. Для расчета генераций ядерной энергии необходимо иметь формулы для скоростей выделения энергии в ядерных реакциях в зависимости от температуры, плотности, и химического состава

. Эти формулы дает ядерная физика. В настоящем практикуме рассматривается превращение водорода в гелий, гелия в углерод и несколько дальнейших реакций.

Второе слагаемое - скорость изменения тепловой энергии вещества звезды .

Третье слагаемое - потери энергии из-за излучения нейтрино не связанные с ядерными реакциями .

Таким образом, окончательно уравнение сохранения энергии выглядит как:

 

  1. Уравнения переноса энергии к поверхности излучением и конвекцией. Чтобы рассчитать перенос энергии в лучистой зоне необходимо знать коэффициент непрозрачности звездного вещества в зависимости от химического состава, температуры и плотности. Ввиду сложности расчета этого коэффициента он вычисляется до сих пор лишь немногими группами астрофизиков в табличной форме. В частности в настоящей программе использованы довольно старые таблицы непрозрачности Кокса и Стюарта 1969.

Итак, для лучистого переноса энергии

где -постоянная плотности излучения , - скорость света.

 

Для конвективного переноса энергии в адиабатической зоне используется другое уравнение:

где - отношение удельных теплоемкостей при постоянном давлении к удельной теплоемкости при постоянном объеме . Это уравнение непригодно для расчета энергии в суперадиабатическом слое (при расчете модели Солнца этот слой важен). В этих слоях пользуются теорией конвекции (например теорией длины пути перемешивания ТДПП). В этой теории имеется параметр - величина порядка единицы, равная отношению среднего пути , проходимого конвективным элементом за время его существования, к шкале высот по давлению , где