Документ взят из кэша поисковой машины. Адрес оригинального документа : http://astra.prao.psn.ru/Molotov/Webpage/html/lfvn_paper.html
Дата изменения: Thu Mar 2 05:03:14 2006
Дата индексирования: Unknown
Кодировка: Windows-1251

Поисковые слова: внешние планеты
Исследования солнечного ветра и квазаров с помощью LFVN

Результаты теоретических и экспериментальных исследований солнечного ветра и активных ядер галактик на РСДБ-сети LFVN с использованием системы регистрации S2

В. Г. Гавриленко1, М. Б. Нечаева2, А. Б. Пушкарев3,4, И. Е. Молотов3,5,6,7, Дж. Туккари8, А. С. Чеботарев9, Ю. Н. Горшенков9, В. А. Самодуров10, Ш. Хонг11, Дж. Куик12, Ш. Доугхерти13, С. Анантакришнан14


1 Нижегородский государственный университет им. Н.И. Лобачевского, Россия
2 Научно-исследовательский Радиофизический институт, Россия
3 Главная (Пулковская) Астрономическая Обсерватория, Россия
4 НИИ 'Крымская астрофизическая обсерватория', Украина
5 Центральный научно-исследовательский институт машиностроения, Россия
6 Институт прикладной математики им. М.В. Келдыша, Россия
7 ОАО МАК 'Вымпел', Россия
8 Istituto di Radioastronomia, Италия
9 Особое конструкторское бюро Московского энергетического института, Россия
10 Пущинская Радиоастрономическая Обсерватория, Россия
11 Shanghai Astronomical Observatory, Китай
12 Hartebeesthoek Radio Astronomy Observatory, Южная Африка
13 Dominion Radio Astrophysical Observatory, Канада
14 National Centre for Radio Astrophysics, Индия

Аннотация

В статье обсуждаются результаты двух наблюдательных сессий Низкочастотной РСДБ-сети LFVN 1999 (INTAS99.4) и 2000 (INTAS00.3) гг., проведенных на длине волны 18 см с использованием канадской системы регистрации S2 и обработанных канадским коррелятором в Пентиктоне (Dominion Radio Astrophysical Observatory). В экспериментах по исследованию свойств солнечного ветра и активных ядер галактик были задействованы следующие антенны (в различных конфигурациях): Медвежьи Озера (РТ-64, ОКБ МЭИ, Россия), Пущино (РТ-22, ПРАО, Россия), ХартРАО (РТ-25, Hartebeesthoek Radio Astronomy Observatory, Южная Африка), Ното (РТ-25, Instituto di Radioastronomia, Италия), Шанхай (РТ-25, Shanghai Astronomical Observatory, Китай), GMRT (РТ-45, National Centre for Radio Astrophysics, Индия), Светлое (РТ-32, ИПА РАН, Россия).

Результатом проведенных работ явилась успешная апробация метода радиопросвечивания плазмы солнечного ветра излучением внегалактических источников, дополненного методом радиоинтерферометрического приема. Спектральный анализ полученных РСДБ-данных позволил сделать оценки показателя пространственного спектра флуктуаций электронной концентрации и скорости переноса неоднородностей солнечного ветра на трассе зондирования.

Представлены и обсуждаются восстановленные изображения квазара CTA 102 и объекта типа BL Lacertae 1418+546 с миллисекундным угловым разрешением, приведены результаты моделирования структуры этих источников.

1. Введение

Переход мировых сетей РСДБ (радиоинтерферометров со сверхдлинной базой) на использование широкополосных терминалов регистрации радиоастрономических данных (МАРК-III, VLBA и К-3) сделал невозможным продолжение международных РСДБ-экспериментов с участием большинства российских радиотелескопов. Поэтому в 1996 г. при поддержке гранта INTAS 96-0183 был начат инициативный проект создания международной Низкочастотной РСДБ-сети LFVN (Low Frequency VLBI Network) с участием крупнейших российских, украинских и индийских антенн [1,2]. В качестве одного из направлений работ LFVN проводилось исследование возможностей организации подсистемы из радиотелескопов, оснащенных регистратором S2 [3]. Этот канадский РСДБ-терминал превышал по своим возможностям MARK-III и К 3, обеспечивая запись цифровых данных с 1- или 2-битным квантованием на восьми бытовых видеомагнитофонах по 16-ти каналам с суммарной скоростью до 128 Мбит/с (эквивалентной полосе регистрации до 64 МГц), но стоил в несколько раз дешевле. Также с ним имелся положительный опыт работы: первый трансконтинентальный S2 эксперимент на длине волны 18 см состоялся в ноябре 1993 г. с участием российского пункта РТ-70 "Уссурийск", РТ-64 "Паркс" и РТ-26 "Хобарт" (Австралия). Первичная обработка проводилась на корреляторе ATNF в Сиднее, Австралия. Вторичная обработка с целью изучения ОН-мазеров выполнена в АКЦ ФИАН [4] и ATNF. Второй пробный эксперимент состоялся в июне 1996 г. на базе между РТ-64 в Медвежьих Озерах (Россия) и австралийским пунктом DSN РТ-70 ("Тидбинбилла"). При этом была достигнута рекордная для S2-регистратора длина базовой линии 11538 км, близкая к теоретическому пределу наземных РСДБ-баз. Основная корреляционная обработка эксперимента проводилась в ATNF, полученные результаты вошли в работу [5]. Данные эксперименты продемонстрировали работоспособность идеи международной РСДБ-сети, базирующейся на использовании S2-регистратора, и приобретение АКЦ ФИАН по гранту Миннауки 4-х терминалов S2 в 1998 г. позволило вплотную перейти к ее реализации в рамках проекта LFVN. К тому времени канадский регистратор уже получил широкое распространение в России (три S2 были приобретены ИПА РАН в 1994 г.) и за рубежом (S2 были закуплены Австралией, Китаем, Индией, США, в дополнение канадское космическое агентство установило несколько терминалов на ключевых радиотелескопах мира в рамках проекта VSOP). Также вступил в строй новый 6-станционный S2 коррелятор в Пентиктоне, Канада (Dominion Radio Astrophysical Observatory) [6].

Первые два S2 терминала АКЦ ФИАН были установлены на радиотелескопах РТ-22 в Пущино и РТ 64 в Медвежьих Озерах, поскольку они были оснащены радиоприемниками на длину волны 18 см, необходимыми видеоконвертерами и S2-интерфейсами. В августе 1998 г. был проведен пробный S2-сеанс INTAS98.2 (полоса записи 2 МГц, 1664,99-1666,99 МГц) с участием РТ-64 ("Медвежьи Озера"), РТ-43 ("Грин Бэнк", США) и РТ-26 ("ХартРАО", ЮАР). Записанные магнитные ленты успешно обработались в Пентиктоне, после чего между DRAO и АКЦ ФИАН было заключено соглашение о сотрудничестве при организации экспериментов LFVN (помимо корреляционной обработки, DRAO также обеспечивал участвующие радиотелескопы чистыми видеокассетами). Результаты исследований квазаров и солнечного ветра, проведенных на LFVN с регистратором S2, описаны в данной статье. С 2002 г. Пентиктон фактически прекратил обработку астрофизических РСДБ-наблюдений в связи с окончанием проекта VSOP, что воспрепятствовало дальнейшему развитию S2-подсистемы LFVN. Эксперимент, организованный в начале 2003 г., так и не был обработан.

2. Наблюдения и обработка

Первая официальная сессия S2-подсистемы INTAS98.5 (2 полосы по 2 МГц, 1664.99 - 1666.99 МГц и 1666.99 - 1668.99 МГц) состоялась в период с 30 ноября по 2 декабря 1998 г. с участием шести РСДБ-пунктов: РТ-64 (Медвежьи Озера), РТ-22 (Пущино), РТ‑300 Аресибо (США) и трех телескопов РТ-32: Светлое (ИПА РАН, Россия), Грин Бэнк, ХартРАО. Впервые были получены РСДБ-лепестки на базах, включающих радиотелескопы в Светлом и Пущино, оборудованные регистраторами S2. По результатам эксперимента с участием 3-х российских пунктов впервые на LFVN построены изображения квазаров [7]. В 1999 г. к проекту присоединился радиотелескоп РТ‑25 Шанхайской астрономической обсерватории (Китай). Терминал S2 был также установлен на радиотелескопе РТ-32 в Ното (Италия) (Istituto di Radioastronomia), ранее участвовавшем в наблюдениях LFVN с терминалом регистрации MARK-II. В период с 29 ноября по 2 декабря 1999 г. осуществлен эксперимент INTAS99.4. В наблюдениях приняли участие пункты в Медвежьих Озерах, Пущино, Светлом, Ното, Шанхае и ХартРАО. Общая продолжительность эксперимента составила 43 часа. Сессия была успешно обработана в Пентиктоне с временем осреднения 2 секунды. Ширина полосы составила 4 МГц (1664.99 - 1668.99 МГц) при 256 спектральных каналах по 15,625 кГц каждый. Для исследования солнечного ветра корреляция данных осуществлялась с временем осреднения 0.1 сек. Результаты частично опубликованы в работе [8], а также приведены ниже. Следующий эксперимент INTAS00.3 был осуществлен в период с 28 ноября по 1 декабря 2000 г. Общая продолжительность эксперимента составила 50 часов. Помимо Медвежьих Озер, Пущино, Ното, Шанхая и ХартРАО, в эксперименте приняла участие 45‑метровая антенна системы GMRT в Индии. С этой целью для института NCRA TIFR был изготовлен 4-х канальный S2 интерефейс-АЦП, обеспечивающий подключение терминала S2 к видеоконвертеру. На время подготовки и проведения сессии в Пуне была направлена экспедиция российских ученых. Это были первые наблюдения GMRT на длине волны 18 см с регистрацией сигнала в полосе 8 МГц (1664.99 - 1672.99 МГц). Обработка осуществлялась в Пентиктоне с использованием 256 спектральных каналов по 31.25 кГц и временем осреднения 2 секунды. Все эксперименты - INTAS98.2, INTAS98.5, INTAS99.4 и INTAS00.4 проводились в левой круговой поляризации с применением однобитного квантования сигнала. Некоторые параметры радиотелескопов (диаметр, системная температура и эквивалентная системная плотность потока SEFD), приведены в Таблице 1.

Таблица 1: Антенны и их характеристики на частоте 1.66 ГГц

Антенна

Диаметр, м

Tsys, К

SEFD, Ян

Медвежьи Озера, Россия

64

65

110

Пущино, Россия

22

111

1590

GMRT, Индия (2000 г.)

45

70

290

ХартРАО, ЮАР

26

50

530

Ното, Италия

32

105

1020

Шанхай, Китай

25

78

980

Светлое, Россия (1999 г.)

32

71

394

Участие антенны ХартРАО существенно повысило угловое разрешение в направлении Север-Юг. Длина максимальной проекции базы достигала 10170 км для пунктов Шанхай и ХартРАО. Для задачи построения радиоизображения, каждый из источников наблюдался от 5 до 8 сканов со средней длительностью 30 минут. В части, касающейся диагностики плазмы солнечного ветра, исследовалось околосолнечное пространство с установившимся течением солнечного ветра [9]. С этой целью наблюдались источники, располагавшиеся от Солнца на угловых расстояниях от 8њ до 51њ, преимущественно точечные (неразрешенные для задействованных баз) либо с симметричной структурой. Выбирались временные интервалы, в течение которых источники находились на углах места большинства антенн выше 15њ для исключения влияния атмосферы Земли на сигнал интерферометра.

3. Исследование активных ядер галактик

В эксперименте INTAS00.3 проводились наблюдения ряда внегалактических источников, для двух из которых (1418+546 и CTA 102) построены радиоизображения и сделан анализ структуры на декапарсековых масштабах. Редактирование и калибровка РСДБ-данных (см. подробнее [10]) были выполнены в пакете AIPS (NRAO) с применением стандартных процедур. Для амплитудной калибровки данных использовались кривые усиления и системные температуры, измеренные на каждой из антенн, принимавших участие в наблюдениях. Первичная калибровка фазы производилась с помощью процедуры AIPS FRING с когерентным временем интегрирования 120 секунд и последующей корректировкой фаз за остаточные задержки на время всего эксперимента, используя телескоп Медвежьи Озера в качестве опорной антенны. Восстановление радиоизображений методом гибридного картографирования было получено с помощью пакета DIFMAP [11]. При гибридном картографировании для каждого источника в качестве первоначальной модели применялась модель точечного источника в фазовом центре. Сходимость достигалась в среднем за 20 итераций, включая фазовую и фазо-амплитудную самокалибровки. При построении окончательной карты источника использовалось естественное взвешивание данных функции видности. На приведенных ниже изображениях сплошными контурами показаны линии равной положительной плотности потока, а проведенные пунктиром  - отрицательной плотности потока. Контуры равной интенсивности проведены с шагом в . В левом нижнем углу карты приведена синтезированная диаграмма направленности. Шкала по горизонтальной и вертикальной оси дана в миллисекундах дуги. На рисунках, отображающих заполнение uv-плоскости, шкала по горизонтальной и вертикальной осях дана в миллионах длин волн (λ=18см).

Моделирование структуры источников проводилось с использованием круговых гауссовых компонент путем сравнения модели и полностью калиброванных данных наблюдений в плоскости пространственных частот (u,v) с помощью DIFMAP. Модели источников представлены в Таблице 2. В первой колонке даны названия объектов, во второй и третьей - экваториальные координаты на эпоху 2000 г., в четвертой приведен интегральный поток компонента модели, в пятой указаны идентификаторы компонент, в шестой и седьмой колонках - положение компонента на карте в полярных координатах r и φ по отношению к самому яркому компоненту, в последней колонке дан размер гаусс-компонента по уровню половинной мощности. Положения отмоделированных РСДБ-компонент отмечены на восстановленных изображениях объектов.

3.1. 1418+546

Источник 1418+546 является объектом типа BL Lacetrae и находится в центре хозяйской галактики, профиль поверхностной яркости которой позволяет отнести ее к спиральному типу S0 [12], что случается крайне редко, так как большинство хозяйских галактик лацертид представляют собой эллиптические галактики. Красное смещение объекта, z=0.152, было измерено Штикелем и др. [13], как по линиям поглощения хозяйской галактики, так и по эмиссионным линиям [O II] λ 3727Å и [O III] λλ 4959 Å, 5007 Å [14]. На Рис. 3.1а показано заполнение плоскости пространственных частот (uv-плоскости) для источника 1418+546 при LFVN наблюдениях INTAS00.3 на длине волны 18 см. На Рис. 3.1б приведена РСДБ-карта (восстановленное распределение яркости) этого объекта с пиком видимой интенсивности 797 мЯн в луче. Нижний контур проведен на уровне 3.25% от максимума. Размер главного лепестка синтезированной диаграммы направленности, использованной для восстановления изображения, составляет 1.7x1.5 миллисекунд дуги, позиционный угол большой оси равен 82њ. Результаты моделирования структуры источника приведены в Таблице 2. На Рис. 3.1в представлено линейное распределение яркости с позиционным углом 116њ, нормированное на пиковое значение плотности потока. Шкала по горизонтальной оси дана в миллисекундах дуги.

Рис. 3.1а Рис. 3.1б

Рис. 3.1в

РСДБ-изображение этого объекта обнаруживает одностороннюю из-за доплеровского уярчения структуру типа ядро-выброс в направлении юго-востока с позиционным углом ~120њ. Джет распространяется на угловое расстояние до 3.2 миллисекунд дуги от ядра. Для перехода к линейному масштабу воспользуемся следующими рассуждениями: с учетом расширения Вселенной, угловой размер θ связан с линейным размером L следующим соотношением:

(3.1)

(3.2)

где c - скорость света в вакууме, H - постоянная Хаббла, - параметр замедления, z - красное смещение. Измеряя L в парсеках, а θ в миллисекундах дуги, и используя стандартную фридмановскую модель Вселенной с параметром замедления (, α=0) и постоянной Хаббла H=70 км/с/Мпс, получим:

(3.3)

Таким образом, для источника 1418+546, расположенном на красном смещении z=0.152, угловому расстоянию в 3.2 миллисекунды дуги соответствует 7.9 парсек в линейном масштабе в проекции на картинную плоскость.

В предположении о равнораспределении энергии между магнитным полем и энергией излучающих частиц [15], яркостная температура излучения области РСДБ-ядра в системе отсчета связанной с источником рассчитывается как

(3.4)

где - плотность потока РСДБ-ядра объекта, - угловой размер кругового гаусс-компонента, соответствующему РСДБ-ядру, по уровню половинной мощности (параметр FWHM в Таблице 2), ν - частота наблюдения, k - постоянная Больцмана, z - красное смещение. Тогда, измеряя в Ян, - в миллисекундах дуги, а частоту наблюдения ν в ГГц, имеем:

(3.5)

Используя данные Таблицы 2, яркостная температура объекта 1418+546 составляет 1.33x1012K, что превышает теоретическое значение яркостной температуры в 1011К для случая равнораспределения энергии [16], а также превосходит предел обратного Комптон-эффекта в 1012К [17]. Это может объясняться доплеровским уярчением, которое является следствием направленности излучения релятивистских электронов, т.е. малости угла между лучом зрения и направлением скорости электронов.

Таблица 2: Модели источников

Источник

α

δ

Компо-

нент

Поток

(Ян)

r

(mas)

φ

(њ)

FWHM

(mas)

1418+546

14:19:46.597

+54:23:14.787

C

0.74

-

-

0.32

     

J1

0.34

1.42

127

0.23

     

J2

0.08

2.29

116

0.26

               

CTA 102

22:32:36.408

+11:43:50.904

C

2.37

-

-

1.15

     

J1

0.41

7.23

145

1.64

3.2. CTA 102

Объект CTA 102 (2230+114) относится к классу сильнополяризованных квазаров и является первым источником, в котором была обнаружена переменность в радиодиапазоне [18]. Оптический спектр этого объекта имеет сильную эмиссионную линию Mg II λ 2798 Å на красном смещении z=1.037 [19]. Структура CTA 102 на килопарсековых масштабах представляет собой доминирующе ядро и два компонента [20], расположенные на расстоянии 1.6 секунды дуги с позиционным углом ~140њ и на расстоянии 1.0 секунды дуги с позиционным углом -40њ.

На Рис. 3.2а приведено заполнение uv-плоскости для источника CTA 102 на длине волны 18 см. На Рис. 3.2б показана РСДБ-карта этого объекта на 1.66 ГГц с пиком плотности потока 2490 мЯн в луче. Нижний контур проведен на уровне 5.02% от максимума. Размер главного лепестка синтезированной диаграммы направленности, использованный для восстановления изображения, 11.9x2.9 миллисекунд дуги, позиционный угол большой оси 37њ. На Рис. 3.2в представлено линейное распределение яркости с позиционным углом 145њ, нормированное на пиковое значение плотности потока. Шкала по горизонтальной оси дана в миллисекундах дуги.

Рис. 3.2а Рис. 3.2б.

Рис. 3.2в

РСДБ-структура 2230+114 состоит из яркого ядра и джет-компонента. Выброс распространяется в юго-восточном направлении с позиционным углом 145њ на угловое расстояние 3 миллисекунды (18.3 парсек в линейном масштабе в проекции на картинную плоскость). Результаты моделирования структуры источника приведены в Таблице 2. Яркостная температура для CTA 102 составила 5.9x1011К.

Для активных ядер галактик, наблюдавшихся в эксперименте 1999 г., были построены карты распределения радиояркости и проведено моделирование их РСДБ структуры [8]. В данной работе представляются: линейные распределения яркости для источников 0420-014, 0420+022, 1308+326, 1345+125 и 1803+784 вдоль направлений выбросов с позиционным углом 4њ, 90њ, -58њ, 152њ, -105њ, нормированные на пиковые значения плотности потока 1337, 770, 1576, 582, 1482 мЯн, соответственно (Рис. 3.4, слева); и полученные заполнения uv-плоскостей (Рис. 3.4, справа). Во всех случаях, за исключением источника 1345+125, качество uv-покрытий можно считать удовлетворительными, поскольку в ходе эксперимента реализовывались малые, средние и длинные базы. Тем не менее, крайне важно увеличивать число участвующих пунктов сети для улучшения динамического диапазона карт и повышения их достоверности.